

Copyright © [2008] IEEE

Reprinted from Proceedings of the 34th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA 2008), Parma (Italy), September 3-5, 2008, pp. 167-
174

This material is posted here with permission of the IEEE. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

Business Value through Product Line Engineering –
A Case Study

1Devesh Sharma, 1Aybüke Aurum, 2Barbara Paech1
1School of Information Systems, Technology and Management,
University of New South Wales, NSW, Sydney 2052 Australia

devesh.sharma@student.unsw.edu.au; aybuke@unsw.edu.au
2Institut für Informatik, Neuenheimer Feld 326, 69120 Heidelberg, Germany

paech@informatik.uni-heidelberg.de

1 The author participated in this work during her sabbatical at the School of Information Systems, Technology and Management
at UNSW. The support given during that time is greatly acknowledged.

Abstract
Software Product Line (PL) Engineering has been
established in the last decade as a proven way to build
flexibility and reusability into software systems. This
approach is centred around the idea that the initial
investments made in the development of reusable
artefacts are outweighed by the quality and product
improvements gained through the reuse of such
artefacts. While there are many studies on introducing
PL engineering into software development and
calculating expected value upfront, there is little
documented evidence of long-term experiences with PL
engineering. This paper examines perceptions of the
value of PL engineering for three PL of different ages.
The paper confirms that, while PL engineering
enhances product value and quality through shared
components and architecture, this is also the
predominant limitation of PL engineering.
Furthermore, our investigations show that while
perceptions of product quality differ depending on PL
maturity, this is not the case for time-to-market and
cost.

1. Introduction
The current trend of globalisation is placing

increased pressure on software organisations to
diversify their product offerings and maximise the
business value of their software products. Over the last
decade, software product lines (PL) [12] have emerged
as a means for IT-related industries to address the
diversity of the global market, and deliver their
products in a timely and cost effective manner. The
key idea behind PL is that most software organisations
develop products in defined application domains, in
which applications have more commonalities than

differences. PL engineering (PLE) is a systematic
development methodology that leverages this concept
by building products from a common set of
components and architecture

Value-based software engineering (VBSE)
promotes approaches that maximise the business value
(e.g. improving process, product or new business
opportunities that increase profit or return on
investment) for software organizations and provide a
systematic process for analysing customer value [8].
Meeting customer needs and expectations is at the
heart of developing any product or service. The ability
to cater for multiple customers with different needs
and requirements, such as through the use of PLE, is a
powerful way of enhancing business value.

Over the last decade, numerous methodologies,
such as Clement and Northrop’s framework for SPL
practice [12], FAST [22], Kobra [3], PULSE [6], and
FORM [19], for PLE have been established. While all
of these methods aim to standardise and improve PLE
practices, few have specifically explored the business
value that PLE entails. Some studies suggest that
developing software as a PL brings competitive
advantage and product improvements to the software
organisations through lower production costs, rapid
time to market, better quality, economic efficiency and
better management of products [9, 13]; but such
studies do not proceed to assess these claims.

This paper presents a comprehensive case study that
aims to understand the benefits and limitations of PLE
in software organisations and its ability to enhance
business value. Results are presented from three PL at
the Australian and Indian branches of a multinational
software organization. The full details of the study

including further data on the effects of globalization on
PLE can be found in [20].

The rest of the paper is organised as follows:
Section 2 covers background knowledge on VBSE and
PLE. Section 3 provides the details of the case study
and Section 4 presents the design of the study. Section
5 presents the results of the data analysis. Section 6
provides a detailed discussion including validity
threats and Section 7 concludes the paper.

2 Background and Related Work

2.1 Value Concepts in Software Engineering
Value creation is an economic activity. The

development of value theory in economics has evolved
from classical economics, such as work-value theory,
to more modern theories, such as utility-value theory
[22]. According to the utility-value theory, the value of
a product can vary widely from customer to customer
depending upon the importance they place on the
various attributes of the product [7]. Utility-value
theory also indicates that a customer’s perceived value
is different from the price of the product, and
sometimes even independent of the price. Hence, a
customer’s perceived value represents the overall
capacity of the product to satisfy a customer’s needs,
or the opportunity cost that the customer is willing to
forgo in return for the product.

The value created in the production process is
divided between customer and producer. The portion
of the value received by the producer is the profit,
calculated as the price of the product minus the cost of
manufacturing the product. The portion of the value
obtained by customer is the difference between the
product value to the customer and the product’s
monetary price [7].

In software engineering, value creation involves
gaining new insights or discovering new patterns of
knowledge at the process level, product level or
resource level [4, 8, 14]. The value of a product
increases in proportion to its advantages over
competitive products, and decreases in proportion to its
disadvantages [2]. Thus the value of any product to a
customer is a function of its performance and price,
relative to other products on the market. The fact that
software is different than other types of products only
serves to complicate the matter [14]. Software is easily
changed (in many cases, too easily) and is often rolled
out several releases. Thus, it is not only a matter of
looking at the short-term value of the next release; the
long-term evolution of a software product has to be
taken into account. There is a constant trade-off
between short-term business goals to satisfy customers

and different markets, and long-term evolution of the
software to ensure that the software product is
competitive in both the short and long-term.

For any given software product, there are many
stakeholders involved in development, including
product developers, management, sales and marketing
staff, support engineers and the customers. Each
stakeholder has a unique perspective of value [8]. For
example, management in a software development
organisation may measure value in terms of profit,
whilst developers may find value in the robustness and
quality of the software product. The customer may
value the product in terms of its benefits and its cost.

It is the importance of incorporating these value
considerations into software engineering practices that
has lead to the development of PLE methods. PLE
offers a systematic method for creating software
product value through lowering development costs and
through reuse of quality software artefacts. It also has
the potential to improve a customer’s perceived value
of the product by constructing quality software
products in a shorter timeframe.

2.2 Empirical Studies on SPL Business Value
Software product lines are as much about business

practices as they are about technical practices. They
require strategic thinking that looks beyond a single
product [22]. PL have two distinct development
processes, which are interlinked: domain engineering
and application engineering [12]. Application
engineering refers to the construction of software
through systematic reuse of artefacts produced during
the domain engineering stage. The application
requirements engineers have to ensure both a high
degree of reuse and the satisfaction of application
stakeholders’ needs. Thus, during application
engineering it is especially important to balance value
from the perspective of the developers and from the
perspective of the customer and management.

There are several methods for determining the
business value of PL upfront. Böckle et al., [10]
present a method to calculate the return on investment
(ROI) for PL. Faulk et al., [15] point out that PL can
bring competitive advantage to the software company
but it is important to calculate the risk for adopting PL
and the risk inherent in applying PLE. Ganesan et al.,
[16] also include risk analysis and additionally
consider PL generations. Wesselius [in 17] uses
scenarios to address uncertainties about the future.
Based on a case study, Baldassarre et al. [5] forecast
the value of a PLE in terms of maintainability,
extensibility and configurability from three different
stakeholders’ perspectives; namely customers,
maintainers and producers. They confirm how PL

contributes to stakeholders’ value propositions. These
methods are applied in case studies, but there is no
evidence as to whether the forecasted business value
really materialized.

Recently long-term experiences with PLE have also
been reported. Deelstra et al., [13] analysed case
studies on PL at a defence organization and a
multinational electronics manufacturer, identifying
problems for application engineering which diminish
expected cost savings. Mansell [in 17] conducted a
study of five small-and medium-sized organisations.
They analysed established reuse practices and ROI in
terms of investment and reduced development costs.
The findings across the five companies varied, but
overall the ROI was higher than the interest of a bank
account. Kolb et al., [18] report insights from a
company which show the value of PLE in spite of so
far not achieved cost and time reductions. The value
lies in the ability to offer a larger variety of products
and in enhancing developer satisfaction. Ahmed et al.,
[1] empirically investigated the relationship between
key organizational factors and PL performance in
terms of cost and development time reductions, market
growth, and financial strengths. The findings showed
that organizational structure, culture, commitment,
learning and change management are positively
associated with the performance of PL. The paper does
not provide data on performance, but analyses the
influence of the organizational factors.

This research, taken together, shows that there is
only emerging evidence of the overall business value
of PLE. This study aims to add to this body of
knowledge by investigating perceptions of PLE value
in three PL of different ages.

3 Case Description
The object of this study was an international

software development organisation operating in over
one hundred countries around the world. It primarily
specialises in database management systems, enterprise
resource planning, customer relationship management
and other industry-tailored products targeting
government, finance and healthcare sectors. All of the
company’s products stem from its four major PL. The
company has a few teams actively involved in
development of its software in Australia, and a larger
research and development base in India. Its
headquarter is in the United States of America and
employs over fifty thousand workers around the world,
with more than twenty five percent of its workforce
involved in software development. For the purposes of
confidentiality, this organisation will be simply
referred to as “the company” throughout this paper.

The company had four individual PL at the time this
research was conducted. However, development in
Australia was only conducted for three of the PL.
Hence, only three PL could be examined in this study.

Product line A (PLA) comprises enterprise resource
planning, supply chain management, customer
relationship management, human resources and
industry-specific applications targeting banking and
healthcare. This is the company’s original PL and has
been undergoing iterative development for over ten
years. It now boasts a large product mix, but has an
aging core asset base with slow evolution of
components and architecture. The products in PLA are
currently in their twelfth major release.

Product line B (PLB) consists of a collection of
products offering solutions for human resource
management, customer relationship management,
manufacturing, and student administration software for
large corporations and government sectors. This PL
was acquired by the company in 2005 through a
takeover of its parent organisation. PLB has a
relatively well maintained core asset base, and has a
proprietary integrated development environment which
forces developers to reuse core assets. The products in
PLB are currently in the ninth major release, and its
architecture is built around its own proprietary
development platform.

Product line C (PLC) is the company’s latest
collection of products aimed at unifying the best-of-
business capabilities offered by its applications and
other PL. Through the use of an open, service oriented
architecture, PLC is used as a standards-based
technology blueprint that enables effective, predictable
business process changes through standards-based
integration of applications developed as web services.
Developers and managers in PLC follow strict
standards which do not allow for the duplication of
core assets and encourage evolution of existing assets.
To date, most PLC products are still undergoing
development and have yet to be released.

4 Study Design
The primary objective of this study was to gain an

understanding of how product value is created using
PLE, and what factors enhance or reduce this value
creation. This objective was further sub-divided into
two separate research questions (RQ):
• RQ1: How is PLE currently used within the

software organisation?
• RQ2: What are the benefits and limitations of PLE?

How do they affect the value of software?
To take into account a customer’s perceived value

in addition to product value, the perception of the

product quality was investigated. However, customers
were not involved and the study was conducted purely
from the perspective of the software organisation.
Product value was investigated in terms of time-to-
market and cost of production.

The study employed a mixed methodology;
incorporating both qualitative and quantitative
instruments to triangulate the results. The examination
of each PL was conducted in two stages: semi-
structured interviews and a short questionnaire.

The purpose of the interview was to qualitatively
understand and describe the implications of PLE and
the prevailing benefits and limitations. The interview
examined 7 key areas, i.e. company and personal
background details, product and PL background, reuse
infrastructure and organisational practice, requirements
engineering (RE) process, architecture design, product
development and validation, product value creation
and impact of global software development. Each
interview took approximately an hour. The following
interview questions focused on the issue of product
value:
• How does PLE link to your organisation’s business

goals or strategies?
• Does PLE enhance your ability to deliver on

customers’ needs and requirements? If so, how?
• What impact has PLE had on your team’s ability to

develop product X?
An interpretive analysis of the interview data was

conducted to address the research objective [21].
The short questionnaire was designed to

quantitatively assess the perception of PLE delivering
on their promised benefits of higher quality, reduced
costs and reduced time-to-market. Participants were
asked to assign a percentage out of 100 to each of the
stated criteria.

Both research instruments were individually
administered to the same participants in each PL.

The study involved 4 Australian participants from
PLA, 4 Australian participants from PLB, and 2 Indian
and 1 Australian participant from PLC. The
participants were product and development managers.

5 Results
In this section we discuss the results of the different

PL individually. First we concentrate on the overall
setting (RQ1) and then on perceptions of value (RQ2).

5.1. Description of the Situation of PLA
PLA has a large number of repositories in which

reusable software assets are restored. The assets range
from requirements documents through to source code
and test cases. All participants were aware of the

repositories available for the storage of software
artefacts of their individual products; however some
participants questioned their effectiveness. PLA shares
these repositories across the entire PL. All artefacts
common across all the products are kept in a single
repository, and the artefacts used by specific products
are kept in separate repositories.

PLA has established tools, which handle the
configuration management of such assets. All software
artefacts have to undergo an established change
management procedure requiring multiple levels of
review. These procedures are built into a formal
development methodology used across PLA. However,
PLA does not have established procedures to identify
reusable artefacts and does not have formal decision-
making criteria to assess an artefact’s suitability to be
placed into a reusable asset to repository. PLA does
not have any formal methods for calculating ROI from
its reusable software artefacts and development
procedures.

The RE process used was typical of one used for
single system development with no formal mechanism
for advancing any requirement to become PL
requirements. For all products in PLA, requirements
are elicited from stakeholders of the developed
application and then compiled into a requirements
definition document after negotiations between
functional teams and a central strategy team. Selection
and prioritisation of requirements in PLA is heavily
influenced by its core customers, and importance is
placed on customers that generate large amounts of
revenue. However all four participants acknowledged
that it was also important for products to be “best of
breed” and market leaders. Time, cost and resources
were treated as secondary criteria by most participants.
Two participants indicated that maintaining market
dominance had a greater impact on requirement
prioritisation. Existing reusable software artefacts were
generally ignored during the selection and
prioritisation of requirements.

All applications in PLA are developed from a
common architecture. While all applications must
conform to this architecture, lead developers have
some autonomy over the design of individual products
by building on top of the PL architecture. Using the
common architecture enforces standards on the
applications that are developed from it, and two
participants felt that this places technical constraints on
what they can develop and the functionality that can be
delivered to the customer. Most of the applications in
PLA have been developed over a number of years, and
newer releases are put through an iteration phase. The
product architecture from previous releases is reused
for later releases, and components selected are

modified through mechanisms of inheritance or
parameterisation. Selection of appropriate components
is generally left to the knowledge and experience of
developers. All developed applications also undergo
multiple stages of testing to verify their adherence to
the original requirements, progressing from unit and
integration testing conducted by development teams,
through to testing by a quality assurance team.

5.2. Description of the Situation of PLB
PLB has a systematic method of storing reusable

software assets. Common objects shared across the PL
are stored in a central database and a proprietary
integrated development environment is used to call
these objects. Product specific classes are also stored
in separate product repositories. All documentation is
stored in an online document management system.
Configuration management of artefacts in PLB is
managed through an established change management
cycle and controlled through the use of proper
configuration management tools. The change
management cycle was standardised across PLB
through its development methodology.

PLB also had ad hoc procedures and decision-
making criteria to assess an artefact’s suitability to be
placed in the reusable asset repository. The flexibility
and generic nature of a component was of critical
importance in deciding whether it could be reused, and
to be placed in the central database. None of the
participants could identify any formal methods for
calculation of ROI for the reusable infrastructure. One
participant questioned whether it was possible to
calculate ROI for individual components.

All products in PLB followed the standard RE
process. The process is similar to that used for PLA,
with requirements elicited from stakeholders being
assessed for their feasibility by a central strategy team.
The requirements are be placed into a requirements
definition document, which is forwarded to product
and development managers. Product managers are
given the responsibility of producing a functional
design document, while developing managers are
responsible for producing a technical design document.
The requirements for products in PLB are both market
and customer driven. Resource constraints, time,
complexity of development, and customer demand
were cited as the major criteria in the selection and
prioritisation of requirements. Higher management and
the product strategy teams were responsible for
requirement selection and prioritisation, which were
subsequently reviewed by a customer focus group. All
participants viewed cost as a secondary criteria when
selecting and prioritisation requirements. Reusable
software artefacts were given active consideration in

the requirements selection and prioritisation process.
One participant added that some requirements could be
considered for the entire PL based on their generic
nature and their ability to be modified for individual
product. In PLB, requirements that cannot be catered
for by the existing architecture are considered when a
product is made more marketable and competitive. One
participant stated that architecture enhancement
requests can be made for such requirements. Any
requirements which could not be satisfied altogether
are delayed for future releases.

Every product in PLB is developed from a common
architecture with common functionality being stored in
a central database. As all applications are developed in
a proprietary integrated development environment,
they are forced to use this common functionality. The
PL architecture is published in technology manuals
and white papers. The restrictive nature of the PL
architecture was a result of it being shared across
multiple products. Two participants indicated that
sharing the architecture across many products makes it
difficult to change and maintain. Most development
teams reuse their source code to develop later releases.
Components are seldom modified and are generally
passed parameters to alter their behaviour. In a similar
manner to PLA, importance is placed on the functional
and technical design documents, and certification
testing ensures that the product is compatible with the
PL.

5.3. Description of the Situation of PLC
All applications in PLC have been built using

Service Oriented Architecture (SOA) techniques,
whereby applications are built out of software services.
These ‘services’ are large units of functionality, such
as placing an order for goods, and have no association
to any other services embedded in them. One
participant indicated that the primary objective in PLC
was to have a single instance of every component or
service to avoid replication and ensure reuse. Software
artefacts created for PLC products are categorized and
stored, and are shared across the PL. Using SOA, PLC
aims to eliminate product specific components as all
service objects can communicate to each other through
the use of metadata and standard communication
protocols. PLC utilises automated configuration
management tools which are merged with the
development environments to manage changes in
software assets. It also uses a defined change
management procedure. Unlike PLA and PLB, service
objects created in PLC may not necessarily be product
specific. Because all objects in PLC are developed as
services, development of software becomes a matter of
utilising the right services to process data as required,

and services may be easily used across multiple
products. None of the participants could describe any
methods they use to calculate ROI for reusable assets.
Two participants were unaware of any such process,
but the third participant outlined that an analysis was
conducted for all objects before they were developed.

Although most products in PLC are still undergoing
development, an established RE process was being
followed by development and product managers. The
method is very similar to PLA and PLB, with a central
strategy team gathering requirements, subsequently
publishing feasible requirements in a requirements
definition document. Product and development
managers are then responsible for creating functional
and technical designs respectively. One participant
explained that requirements came from a large number
of sources: The selection and prioritisation of
requirements in PLC is influenced by internal
priorities, resource constraints and a mix of customer
and market demands. Only one participant cited
development cost as a criterion in prioritisation of
requirements. Since PLC is in its development stage, a
process for managing requirements beyond the existing
architecture could not be defined.

The architecture used in PLC is extremely flexible
as SOA services are loosely coupled. Unlike products
in PLA and PLB, applications in PLC are not compiled
into an executable with rigid links. Senior architects
are responsible for developing links between service
objects to provide the required functionality and
solutions. PLC used a layered approach in its
architecture with any product-specific objects
communicating to other generic services through
metadata. None of the participants could identify any
functional or non-functional constraints that were
placed on their product by architecture. Applications in
PLC are still undergoing initial development, which
involves selecting the right service objects and
provisioning for interaction between the service
objects. There is limited modification of existing
components as the functionality of applications could
be simply modified by selecting different instances of
components. All applications developed in PLC were
tested in a similar manner to PLA and PLB.

5.4 Product Value Perception in PLA
All participants in PLA understood that the primary

objective of the company was to generate revenue
from its products. PLE helped to improve revenue
streams from the efficient development of software.
PLE was also identified as enhancing the ability to
deliver on customers’ needs and requirements. One
participant stated that PLE allowed for greater

integration between products and helped to better
deliver on customer needs.

All participants perceived PLE as having a positive
impact on their ability to develop products. PLE was
perceived as a means of enabling standards based
development that allowed for the integration of
products. However, this also induced limitations. One
participant stated, referring to the SPL architecture: “If
there is something new out there we cannot use it
because of the restrictions we face, because the new
functionality hasn’t been certified, it hasn’t been tested
to the product line architecture and its principles. It
doesn’t always do us any good, and creating
unnecessary constraints and creating a lot of extra
work”.

5.5 Product Value Perception in PLB
In PLB, all participants understood that the ultimate

goal of the company was to deliver on its customers’
needs and requirements. PLE had enabled the company
to be focused on their customer’s needs and
requirements. PLE was also directly associated with
the development of products that satisfied customer
requirements and delivered products in a shorter time
frame. One participant stated that PLE enabled his
team to focus on the development of new functionality.
Another participant also indicated that PLE enabled his
team to reduce development time due to its ability to
focus development on a focused scope,

All participants had a general perception that PLE
had a major impact on their product development and
increased the their team’s efficiency in developing
products.

The primary limitation of PLE was seen in its
restrictive nature of shared components and
architecture. Sharing architecture across many
products made it difficult to change and maintain, and
limited the functionality of products.

5.6 Product Value Perception in PLC
Most participants in PLC described the company’s

business goals as a combination of satisfying customer
needs and generating revenue from its products. One
participant indicated that both objectives were
essentially interrelated as customer satisfaction lead to
market domination, which was the primary
determinant of revenue generation. PLE was identified
as a means of enhancing the ability to deliver on
customers’ needs and requirements. PLE helped the
team deliver quality products to customers:. All
participants felt that PLE had a positive impact on the
team’s ability to develop their respective products.

PLE ensured the development of quality products
through the use of common standards.

The grouping of products inevitably leads to large
scale interdependencies, but despite having common
standards, a single failure can lead to large scale delays
in development. One participant outlined how this can
occur in PLE: “(The) negative aspect is that when we
use low level components, and there are issues and
bugs in that, we need to change our timelines to
incorporate the time taken to fix that component”.

5.7 Results from the Questionnaire
As can be seen from the last three sections, despite

of the differences in the settings, the participants of all
SPL confirmed that PLE links to the organisation’s
business goals, enhances the ability to deliver on
customers’ needs and requirements, and supports the
team’s ability for development. After the conclusion of
the interview, each participant was asked to rate the
ability of PLE to reduce time-to-market, reduce costs
and increase quality as a percentage out of 100. The
answers for each criterion from each PLE were
summed and an average obtained. The averages
obtained represent the estimated ability of PLE to
deliver benefits to the software organisation compared
to the standalone development of the individual
products contained within PL. The results are
presented in Table 1.

Table 1. Perceived Benefits of PLE

Product
Line

Reduced
Time-To-
Market

Higher
Quality

Reduced
Development
Costs

A 70% 50% 70%
B 72% 70% 67%
C 73% 67% 63%

The main difference is that participants in PLA did
not perceive PLE as a strong means of producing
higher quality products. Based on the study we cannot
establish the reasons for this difference. However, as
described in section 5.1-5.3, the main difference
among the three PL was the age and the enforcement
of the reuse standards. PLA shows an aging core asset
base and slow evolution of core assets, which in turn
limits the functionality delivered from newer releases
of products in the PL. Comparatively, PLB and PLC
apply a much more forced reuse and continued
evolution of core assets. Thus, it may be inferred that
the quality delivered by PLE is dependent upon the
quality of the core assets themselves.

6 Discussion of Results
This exploratory study brings important empirical

knowledge and evidence to the PLE domain and
provides diversified views on product improvements
from a rich case study. The following three key
observations are made from this study:

Firstly, PLE was generally perceived as having a
positive impact on product development and business
value across the three PL. While all participants
recognized that the primary business objective of the
company was revenue generation, there was some
difference of opinion as to how PLE helped achieve
this objective. In PLA, the ability of PLE to focus
development on a defined scope and deliver on
customer requirements was seen as conforming to the
company’s business objectives. This view was also
expressed in PLB and PLC, which went on to further
describe cost savings delivered by PLE through the
“efficient” use of development staff.

Secondly, the ability of PLE to integrate multiple
products was seen as both an advantage and
disadvantage. It was recognized in PLA that the
integration of products could satisfy broader customer
requirements that go beyond the scope of individual
applications. The ability to integrate products and
share common components was also perceived as
reducing time and increasing efficiency in PLB.
However, the reuse of common components and the
strong integration of products is a double edged sword.
It was indicated in PLC that any faults in these
common components had the potential to cause delays
across the entire PL. This was reinforced in PLB and
PLA.

Thirdly, PLE was also perceived as a means of
encouraging focused development due to the defined
scope and domain used in a PL.

Overall, it can be concluded for all three PL that
while PLE enhances product value and quality through
shared components and architecture, this is also the
predominant limitation of PLE. Furthermore, it shows
that while perceptions of product quality differed
depending on PL maturity, this was not the case for
time-to-market and cost.

The results of this study must be interpreted with
caution as the three PL studied are not a representative
sample of the software industry. The participants
selected may not adequately reflect the diversity of
opinion on the current practice of PLE. This research
has low external validity as it only looks at three PL
from a single software organisation. The small sample
size used in this study also indicates that conclusions
made may not be. However, the company is very
typical for a large software development company, and

has sustained experience with PLE. A potential threat
to the internal validity of this research is related that is
possible that the respondents of the questionnaire may
not have understood the questions as intended, or in a
similar manner to one another.

7 Conclusion and Future Work
This paper presents an exploratory study in

providing a more comprehensive picture of business
value of PLE. It provides the first steps towards a
greater understanding of the product improvements
delivered through systematic reuse and processes
within the software organisation.

We have tried to add empirical evidence on the
long-term effects of PLE, particularly with respect to
business value. Similar to previous studies, for all three
PL a positive impact on business value was observed
in terms of meeting business goals and customer needs,
in addition to reduced time-to-market, reduced cost of
product development and improved team development.
In other words, PLE seemed to enhance product value
and quality through shared components and
architecture; however, this was also the predominant
limitation of PLE. Furthermore, the results showed that
while perceptions of product quality differed
depending on PL maturity, this was not the case for
time-to-market and cost.

Future work should focus on more thoroughly
investigating the different facets of business value.
Empirical studies to date have only looked at the
different facets individually and it is important to link
them together. In particular, perceptions of product
quality requires further investigation.

References
1. Ahmed F, Capretz LF, Sheikh SA (2007)

Institutionalization of Software Product Line: An Empirical
Investigation of Key Organizational Factors. Systems and
Software 80(6) :836-849

2. Alwis, D., Hlupic, V., Fitzgerald G (2003) Intellectual
capital factors that impact of value creation. 25th Int. Conf
Information Technology Interfaces, Croatia, pp 411-416

3. Atkinson, C. et al., (2002) Component-Based Product Line
Engineering with the UML Addison-Wesley, New York

4. Aurum A, Wohlin C (2007) A Value-Based Approach in
Requirements Engineering: Explaining Some of the
Fundamental Concepts. Int. Conf on Requirements
Engineering: Foundation for Software Quality (REFSQ’07),
11-12 Trondheim Norway.

5. Baldassarre MT, Caivano D, Visaggio G (2006) Software
Product Lines in Value Based Software Engineering. 10th
Int Conf on Evaluation and Assessment in Software
Engineering (EASE) Keele Univ, UK, 10 - 11 April 2006

6. Bayer J, Flege O, Knauber P, Laqua R, Muthig D, Schmid
K, Widen T (1999) PuLSE: A Methodology to Develop
Software Product Lines. Proc. of the 5th ACM SIGSOFT
Symposium on Software Reusability (SSR'99), pp. 122-131

7. Besanko D, Dranove D, Shanley M, (2000) Economics of
strategy, John Wiley & Sons, New York, 2nd Edition

8. Biffl S, Aurum A, Boehm B, Erdogmus H, Grünbacher P
(Eds.) (2005) Value Based Software Engineering, Springer,
Germany

9. Birk A, Heller G, John I, Schmid K, von der Masen T,
Muller K (2003) Product Line Engineering: The State of the
Practice. IEEE Software Nov/Dec

10. Böckle G, Clements P, McGregor JD, Muthig D, Schmid K
(2004) Calculating ROI for Software Product Lines, IEEE
Software May/June, pp. 23-31

11. Browning TR (2003) On Customer Value and Improvement
in Product Development Processes. Systems Engineering,
6(1):49-61

12. Clements P, Northrop L (2002) Software Product Lines :
Practices And Patterns, Addison-Wesley, Boston

13. Deelstra S, Sinnema M, Bosch J (2004) Experiences in
Software Product Families: Problems and Issues During
Product Derivation. Proc. of the 3rd Software Product Line
Conference, pp. 161 - 182

14. Favaro J, Favaro KR, Favaro PF (1998) Value Based
Software Reuse Investment. Annals of Software
Engineering, 5: 5–52

15. Faulk SR, Harmon RR, Raffo DM (2000) Value Based
Software Engineering: A Value-Driven Approach to
Product Line Engineering. 1st Int. Conference on Software
Product Line Engineering, Denver, Colorado, USA

16. Ganesan D, Muthig D, Yoshimura K (2006) Predicting
Return on Investment for Product Line Generations. 10th
Int. Conf on Software Product Line Engineering, pp.13-24

17. Käkölä T, Dueñas JC (Eds.) (2006) Software Product
Lines: Research Issues in Engineering and Management,
Springer, Germany

18. Kolb R, John I, Knodel J, Muthig D, Haury U, Meyer G
(2006) Experiences with Product Line Development of
Embedded Systems at Test AG, .10th Int. Conference on
Software Product Line Engineering

19. Lee J, Kang KC, Kim S, Kim K, Shin E, Huh M (1998):
FORM: A Feature-Oriented Reuse Method with Domain-
Specific Reference Architectures, Annals of Software
Engineering, 5:143-168

20. Sharma D (2007) Blueprint of Success: Creating Software
Product Value through Product Line Engineering. Honours
Thesis. School of Information Systems, Technology and
Management, University of New South Wales

21. Silverman D (2001) Interpreting Qualitative Data. Sage
Publication, London UK

22. Weiss DM, Lai C (1999) Software Product-Line
Engineering: A Family-Based Software Development
Process, Addison-Wesley

23. Yannou B, Ahmed WB (2003), Polysemy of Values or
Conflict of Interests: A Multi-Disciplinary Analysis. Int.
Journal of Value-Based Management, 16(2): 153-179

