

Copyright © [2009] IEEE.

Reprinted from Proceedings of the First International Conference on Advances in System Testing

and Validation Lifecycle (VALID´09), Porto (Portugal), September 20-25, 2009, pp.80-85, IEEE

Computer Society 2009

This material is posted here with permission of the IEEE. Internal or

personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution must be

obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the

copyright laws protecting it.

Integration Test Order Strategies to Consider Test
Focus and Simulation Effort

Lars Borner, Barbara Paech
Chair of Software Engineering,
Institute for Computer Science,

University of Heidelberg
Im Neuenheimer Feld 326,

Heidelberg, Germany
borner@informatik.uni-heidelberg.de
paech@informatik.uni-heidelberg.de

Abstract — The integration testing process aims at
uncovering faults within dependencies between the
components of a software system. Due to the lack of
resources, it is usually not possible to test all dependencies.
Fault prone dependencies have to be selected as test focus.
This test focus has to be considered during the stepwise
integration of the whole software system. An integration test
order strategy has to devise an integration order that
integrates dependencies selected as test focus in early
integration steps. Furthermore the strategy has to minimize
the effort to simulate not yet integrated components of the
software system. Current approaches only focus on the
reduction of the simulation effort, but do not take into
account the test focus. This paper introduces an approach to
determine an optimal integration testing order that
considers both, the test focus and the simulation effort. The
approach is applied to nine real software systems and the
results are compared to six approaches.

Keywords-integration testing; integration order; test focus,
simulation effort, heuristic algorithms

I. INTRODUCTION
Today’s software systems consist of thousands of

software components. These components depend on each
other. Testing the dependencies between components is the
goal of the integration testing process, namely to uncover
“… component faults that cause intercomponent failure”
([1], p 629). A dependency AB is defined as
unidirectional relationship between two components A and
B. The dependent component A depends on the
functionality of the independent component B.

It is not possible to test all dependencies within a
software system [9]. Therefore, the dependencies to be
tested have to be selected carefully. An approach to the
selection of the test focus for the integration testing
process is described in [2] and [3]. This approach uses
information of former versions of a software system to
uncover dependency properties that correlate with the

number of faults in the participating components. This
information is used to predict fault prone dependencies in
the current version of the software system. These
dependencies are selected as test focus.

Having decided which dependencies should be tested,
several further decisions have to be made (see [4]). One of
these decisions deals with the stepwise integration test
order. A stepwise integration adds one component at a
time to a set of already integrated components and tests the
dependencies between the already integrated components
and the new component. Thus the dependencies are
systematically tested and the effort to uncover the cause of
a fault is reduced [1]. The disadvantage is that components
required in the current integration step, but not yet
integrated, have to be simulated by using stubs [6].

An optimal integration test order has to satisfy two
criteria: First, the dependencies selected as test focus have
to be integrated as early as possible. A dependency is
integrated, if and only if the dependent and independent
component of the dependency is integrated. Second, the
selected integration test order should utilize a minimal
simulation effort. The simulation effort is the effort
required to simulate non-integrated components. Current
approaches like [5], [6], [8], and [12] only consider the last
criterion and try to minimize the simulation effort. No
existing approach can be found that considers the test
focus and the simulation effort in the integration test order
determination.

In Section 2 we introduce an approach to measure the
test focus consideration of given integration test orders.
Section 3 describes five algorithms that are used in
existing approaches to derive an integration test order.
Furthermore the Simulated Annealing algorithm [7] is
described and used for the first time to derive an
integration test order. Additionally an approach is
proposed that derives an order that perfectly considers the
test focus, but does not take into account the simulation
effort. In a first experiment these seven approaches are
applied to nine open source software systems to show how

well they consider the test focus and the simulation effort.
The results of the first experiment are given in Section 3.
Section 4 describes possible adaptations of existing
algorithms with the goal to determine an integration test
order that optimizes both, the test focus and the simulation
effort. In a second experiment the adapted approaches are
applied to the nine software systems and the results of the
experiment are presented in Section 4. Section 5
summarizes the results of the paper.

II. MEASURING THE TEST FOCUS CONSIDERATION
For a given integration test order the test focus

consideration has to be determined. The goal is to compare
two orders to decide which one considers the test focus
best. To satisfy the criterion of test focus consideration, all
components involved in dependencies, which are selected
as test focus, have to be integrated before components
involved in not selected dependencies are integrated.
Therefore, our approach divides the components to be
integrated into two sets. The first set CTF contains all
components involved in dependencies selected as test
focus. The second set CNTF contains the remaining
components. It is important to mention that both sets are
disjoint. If a component A can be assigned to both sets,
because A participates in dependencies selected as test
focus and dependencies not selected as test focus, A is
assigned to the set CTF., because A is required to integrate
the test focus dependency.

The test focus consideration TFC for a given
integration test order ITO is calculated as follows:

TFC(ITO) = Number of correctly integrated dependencies

Concerning the test focus, a dependency is integrated

correctly, if the dependent and independent components of
the dependency are integrated in the first
X-1 steps of the given ITO, where X is the number of
components in CTF: i.e. X = |CTF|. To consider the test
focus perfectly, all components in CTF have to be
integrated before the components in CNTF. In such a case
the test focus consideration is the number of dependencies
selected as test focus.

This approach is illustrated by the example system
described in [6] and shown in Figure 1. The system is
modeled by using an Object Relation Diagram [6] and
consists of eight components and 17 dependencies. The
dependencies are labeled according to the kind of
dependency, where As stands for Association, Ag for
Aggregation and I for Inheritance.

Within the example system the dependencies EA,
EF, CH und HC where randomly selected as test
focus. Therefore, the components in CTF are A, C, E, F
and H and should be integrated in the first 4 (=|CTF|-1)
integration steps.

The order ACGHEDBF is one possible ITO. In a first
step A and C are integrated, in the second step G, in the
third step H, in the fourth E and so on. For this order the
three dependencies EA, CH, and HC are correctly
integrated, because the components A, C and H are

integrated in the first four integration steps. The
component E is integrated in the fourth step but F is
integrated in the seventh step, therefore the dependency
EF is integrated wrongly. This means 75% of the test
focus dependencies are integrated correctly. An order not
considering the test focus very well is GBDFEACH. Only
the dependency EF is integrated correctly because the
components E and F are integrated in the first 4 steps.
These are 25% of all dependencies.

Figure 1. Example System [6]

Our approach can be used to compare existing
algorithms. For every existing algorithm the derived ITO
is analyzed to clarify how many dependencies are
integrated correctly concerning the test focus.

III. EXISTING APPROACHES
Several approaches can be found in the literature,

which derive an optimal integration test order. All
approaches only focus on minimizing the simulation effort
that means they try to minimize the number of
components, dependencies, service calls and/or attribute
accesses to be stubbed. In an acyclic software system this
could be done by simply using the topological sort
algorithm [6]. If the software system contains dependency
cycles, “the proposed strategy consists of identifying
strongly connected components (SCCs) and removing
associations until there is no cycle in the SCCs” ([6], page
594). Removing an association, or in general a
dependency, from a given software system, leads to a new
stub that has to be realized.

The algorithms applied in this experiment can be
divided into two categories: graph-based algorithms and
heuristic algorithms. Algorithms of the first category
systematically try to remove dependencies. They use
different approaches to select the dependencies to be
removed. In our experiments we applied the algorithm of
Tai and Daniels, Le Traon et al. and Briand et al.
summarized in [6]. The heuristic approaches
systematically create random integration test orders. They
use a cost function to compare two orders to identify the
best. Through several iterations new orders are created and
after a finite number of iterations the best order is selected.
In the literature the only heuristic algorithm that is applied
to derive an integration test order is the Genetic algorithm

[5]. In our work we also analyzed a random based
algorithm and an approach called Simulated Annealing [7].
As far as we know this is the first research work that uses
the Simulated Annealing to derive an integration test
order.

In the following sections both categories and
algorithms shortly are introduced. Afterwards an algorithm
that derives an integration order that perfectly considers
the test focus is proposed.

A. Graph Based Algorithms
Graph based algorithms use as input to derive an

integration test order a model such as an Object Relation
Diagram shown in Figure 1. They identify cycles in the
model and dependencies to be removed in order to break
the cycles. One of these approaches is the algorithm of Tai
and Daniels [12]. In a first step they only consider
inheritance and aggregation dependencies to assign Major
level numbers to each component. In a second step the
associations are analyzed to compute additional Minor
level numbers. The Major and Minor level numbers are
used to determine the integration order.

The algorithms of Le Traon et al. [8] and Briand et al.
[6] use the algorithm of Robert Tarjan [13] to identify
SCCs. For every SCC the selected dependencies are
removed to break the SCC. The approaches differ
according to the way the dependencies, which are to be
removed, are selected. Le Traon et al. compute a weight
for every component and remove all incoming
dependencies of a component with the highest weight.
Briand et al. compute a weight for the association in an
SCC. The association with the highest weight is removed.
After removing one or more dependencies, Le Traon et al.
and Briand et al. apply Tarjan’s algorithm again to identify
further SCCs and select new dependencies to be removed.
This is repeated until Tarjan’s algorithm does no longer
find any cycles in the remaining graph. Finally the
integration test order can be determined by simply using
the topological sort algorithm.

B. Heuristic Algorithms
Heuristic algorithms do not use the model of the

software system to identify dependencies to be removed in
order to break cycles. They create several random
integration test orders. They use a cost function to compare
the orders to identify the best order.

The only heuristic approach used to derive integration
test orders is the Genetic algorithm as described by Briand
et al. in [5]. Genetic algorithms associate optimization
problems with biological concepts. An integration test
order can be seen as a chromosome consisting of genes.
The genes are the components of the software system.
Every gene in a chromosome has a specific position. One
chromosome is part of a population. A population is a set
of chromosomes. By modifications like crossover and
mutation the chromosomes of a given population can be
transformed. The new chromosomes are part of a new
population. However, only the fittest chromosomes are
modified to get better chromosomes. The goal of the

Genetic algorithm is to let the fittest chromosomes
“survive” and bad chromosomes “die”. After a finite
number of iterations, where new populations were created,
the best chromosome is selected as the test focus.

When using heuristic algorithms the challenge is to
define a cost function that determines a numeric value that
indicates the fitness of a chromosome. Briand et al.
propose in [5] a cost function for an integration test order.
They use the number of attribute accesses and the number
of service calls that have to be stubbed by a given
integration order. Both values are normalized that means
for every dependency the number of attribute accesses in
this dependency is divided by the maximum number of
attribute accesses in all dependencies. The service calls are
normalized in the same way. To make sure that no
inheritance dependencies are broken, Briand et al. use a
precedence table to avoid chromosomes that break
inheritances. Therefore, they do not need to consider the
inheritances in their cost function. In our experiments we
do not use a precedence table. We adapted the cost
function of Briand et al. and added a new parameter to
consider the inheritances. The new parameter is set to “1”
if the dependency is an inheritance and is set to “0” if not.
As shown in the following equations, we use the weight
means to compute the simulation effort (SE) of a broken
dependency AB. ANorm is the normalized number of
attribute accesses, SNorm the normalized number of service
calls and I is the inheritance parameter. The weights WA,
WS and WI are used to adapt the equations to the project
context. They can be used to specify that simulating an
inheritance is harder than breaking service calls and
attribute accesses. The sum of all three weights has to be
“1”. To make sure that as few inheritances as possible are
broken by the derived integration test order, we use the
values WI=0.9 and WA=WS=0.05. To compute the fitness
of a given integration test order, the simulation effort SE
for all broken dependencies has to be sum up.

SE(AB)=(WA*ANorm(AB)+WS*SNorm(AB)+WI*I(AB))*1/3

A simpler heuristic approach to derive an integration
test order is the random based approach. This approach
tries X-times to create a random integration order without
taking into account the old orders. Every time a new order
is randomly generated, the order is compared to the current
best order by using the cost function above. If the fitness
of the new one is smaller than the fitness of the current
best, the new one becomes the current best.

Another heuristic approach that can be used to derive
integration test orders is the Simulated Annealing
algorithm. Burkard and Rendl describe in [7] how this
algorithm can be applied to optimization problems. In our
work we adapt this algorithm to be used in integration test
order derivation. The Simulated Annealing algorithm is
inspired by physical processes. The algorithm “… was
proposed […] to simulate a collection of atoms in
equilibrium at given temperature t” ([7], p. 170). The
equilibrium is described by the energy E that the collection
shows. Position changes of the atoms in the collection lead
to changes in the energy. Adapted to the integration test

order derivation the collection of atoms represents an
order. The energy can be expressed by the fitness of the
order. By changing the position of two components the
fitness of the order will change. If the new order fits better,
it will be accepted. If this is not the case the new order is
accepted with a given probability. The probability enables
the algorithm to pass a local optimum to find the global
optimum. The probability P depends on the current
temperature t and the difference between the fitness of the
old and the new order as shown in the following equation:

P = exp ((F(IRnew) – F(IRold)) / t)

At the beginning the temperature is high and thus the
probability to accept worse orders will also be high. This
means that at the beginning worse orders are accepted.
During the execution of the algorithm the temperature
decreases and as a consequence the number of accepted
worse orders will become very small. For the Simulated
Annealing algorithm three parameters have to be set before
it can be executed: initial temperature tinitial, final
temperature tfinal and the number of modifications with the
same temperature N. The initial temperature is the
temperature the algorithm starts with. The higher the initial
temperature the higher is the probability to accept worse
orders. The final temperature tfinal is the exit condition of
the algorithm. If the current temperature is smaller than
tfinal the algorithm stops. N describes the number of
modifications of current orders with the same temperature.
Every time the temperature decreases N tries are made to
create new orders.

C. Ideal Test Focus Consideration (ITFC)
All six algorithms of the previous sections only take

into account the simulation effort when deriving an
integration test order. To derive an order that considers the
test focus perfectly, the two sets CTF and CNTF have to be
integrated one after another starting with the components
in CTF followed by the components in CNTF. The order
within both sets does not make a difference for the test
focus consideration. Existing approaches can be used to
optimize the integration test order within both sets. In our
approach we use the graph-based algorithm of Briand et
al., [6] because our experiment results have shown that it is
the best algorithm to minimize the simulation effort. This
algorithm is applied to both sets independently. After the
application of Briand’s algorithm both ordered sets are
combined to one integration test order. The derived order
perfectly satisfies the criterion of test focus consideration,
but breaks at least all dependencies where the independent
component is assigned to the set CNTF and the dependent
component to CTF.

D. First Experiment
In a first experiment the seven algorithms are applied

to nine open source software systems. The software

systems1 are Eclipse (1), Apache ANT (2), Apache FOP
(3), Chemistry Development Kit (4), Free Network Project
(5), Jetspeed (6), JMol (7), OSCache(8) and TVBrowser
(9). The goal is to identify how well the algorithms
consider the test focus and the simulation effort. To
measure the test focus consideration we use the number of
wrongly integrated dependencies. For the simulation effort
we measure the number of stubbed classes, stubbed
dependencies, broken inheritances, stubbed service calls,
stubbed attribute accesses, and the fitness. Every
algorithm was only applied once to the nine software
systems. An overview of the size of all software systems is
shown in Table I.

The dependencies of the software systems and their
properties are identified by using the source code analyzer
SISSy 2 and a small self developed tool called
MetricAnalyzer. SISSy creates an abstract model of the
source code and exports the model into a data base. The
MetricAnalyzer extracts the dependencies and their
properties from the data base. The required dependency
properties are the number of service calls, the number of
attribute accesses and a flag indicating an inheritance. The
analyzed components are source code files. The mapping
from classes to source code files is described in [3].

For Eclipse the test focus has already been computed
by the test focus selection approach described in [3]. The
results of the case study in [3] are used in this experiment.
For the remaining eight software systems we compute the
test focus by using the number of faults per component.
This number was computed by Timea Illes-Seifert in her
work in [10] and [11]. The dependencies where 20% of
components with the highest number of faults are involved
are selected as test focus.

TABLE I. SIZE OF THE SOFTWARE SYSTEMS

 Source
Code Files Dependencies Inheritances Associations

OSCache 110 298 43 282
JMol 323 1480 172 1455
Freenet 456 2019 262 1852
TVBrowser 818 4320 393 4053
Apache FOP 1006 4728 773 4468
Apache CDK 1022 5745 751 5289
ANT 1053 4524 1027 4236
Jetspeed 1347 4315 991 3733
Eclipse 10133 96476 10375 91455

For the comparison of each algorithm and each metric

an average rank for all nine software systems is computed.
For example the graph-based algorithm of Briand et al.
computed for five software systems the order with the
smallest number of stubbed components (rank 1) and for
four software systems it reaches the second rank. The

1(1) Eclipse, www.eclipse.org, (2) http://ant.apache.org, (3)
http://xmlgraphics.apache.org/fop/, (4)
http://sourceforge.net/projects/cdk/, (5) http://freenetproject.org, (6)
http://portals.apache.org/jetspeed-2/, (7) http://jmol.sourceforge.net/, (8)
http://www.opensymphony.com/oscache/, (9) http://www.tvbrowser.org/
2 http://sissy.fzi.de/

average rank for all software systems is 1.4. The average
rank for each algorithm and metric is summarized in Table
II. The average rank of the best algorithm according to a
metric is highlighted.

TABLE II. AVERAGE RANK PER ALGORITHM (FIRST EXPERIMENT)

Fi
tn

es
s

St
ub

be
d

Fi
le

s

St
ub

be
d

D
ep

en
de

nc
ie

s

St
ub

be
d

Se
rv

ic
e

C
al

ls

St
ub

be
d

A
tt

ri
bu

te

A
cc

es
se

s

B
ro

ke
n

In
he

ri
ta

nc
es

W
ro

ng
ly

 In
te

gr
at

ed

D
ep

en
de

nc
ie

s

ITFC 5.9 5.2 5.0 4.9 5.2 5.9 1.0

Tai & Daniels 4.2 4.6 5.4 5.3 4.2 1.0 5.4

Simulated Annealing 1.9 2.8 2.6 2.0 2.4 1.8 4.1

Genetic 3.2 4.9 4.1 3.7 3.6 2.1 4.4

Briand 1.4 1.4 1.0 1.6 1.4 1.0 6.4

Le Traon 4.3 1.9 2.9 3.6 4.0 4.4 2.3

Random-Based 7.0 7.0 7.0 7.0 7.0 7.0 3.8

The last column of the table shows that our algorithm

considers the test focus best. However, our algorithm does
not very well take into account the simulation effort. This
is shown by the average rank of the fitness, of the stubbed
elements (Files, Dependencies …) and of the broken
inheritances. As shown in Table III our algorithm
considers 100% of the test focus dependencies. The second
best algorithm is the algorithm of Le Traon et al. However,
this algorithm integrates only about 34% of the test focus
dependencies correctly. The algorithm that considers the
test focus worst is the algorithm of Briand et al. Only
about 10% of all test focus dependencies were integrated
correctly.

TABLE III. CORRECTLY INTEGRATED TEST FOCUS IN PERCENT
(FIRST EXPERIMENT)

IT
FC

T
ai

 &

D
an

ie
ls

Si
m

ul
at

ed

A
nn

ea
lin

g

G
en

et
ic

B
ri

an
d

L
e

T
ra

on

R
an

do
m

-
ba

se
d

Correctly integrated
test focus in % 100 13.26 19.27 13.48 10.13 33.78 20.62

Yet, the algorithm of Briand et al. performs best in
minimizing the simulation effort (average rank of 1.0 to
1.6). Our results are consistent with the results of Briand et
al. in [6], who compared the three graph based algorithms
mentioned above to analyze how well they consider the
simulation effort.

IV. TEST FOCUS AND SIMULATION EFFORT
In this section we analyze whether the existing

algorithms can be adapted to consider the test focus as well
as the simulation effort. The graph based algorithms
cannot be adapted to consider the test focus as they do not

have parameters which can be applied to consider
additional optimization criteria. Only the heuristic
approaches are extendable, because their cost function
describes whether an order fits better than another. All we
have to do is to expand the cost function by an additional
value. This value represents the test focus consideration
TFC. It is added to the overall simulation effort OSE of an
integration order. The goal is to find a value that represents
the test focus consideration and is equivalent to the value
of the overall simulation effort. In several experiments we
tested equations for TFC. First we used the number of not
correctly integrated dependencies. However, the influence
of the TFC to the fitness of an order was too high. A better
value representing the TFC in our cost function is the
number of not correctly integrated dependencies divided
by the average number of dependencies per component.

The fitness of an integration test order is computed by
the weighted arithmetic mean of OSE and TFC:

Fitness = (WOSE * OSE + WTFC*TFC) / 2

The sum of WOSE and WTFC has to be “1”. Both

weights can be used to parameterize the algorithms. If an
integration order is required that considers the simulation
effort in the same way as the test focus, both weights have
to have the same value. In our second experiment we use
WOSE=WTFC=0.5.

A. Second Experiment
In our second experiment we apply the adapted

versions of the heuristic approaches to the nine software
systems. Similar to the first experiment the approaches are
only applied once. The results of the other four algorithms
are taken from the first experiment. The goal is to show
that the test focus as well as the simulation effort can be
considered in an integration order. The results are shown
in Table IV and Table V. For the

Beside the seven metrics of the first experiment two
additional metrics are collected. The metric TFC (column
3) represents the test focus consideration and OSE
(column 4) the overall simulation effort. The average rank
of the fitness computed by the cost function is represented
in column 2 and indicates how well the derived integration
test orders consider the test focus and the simulation effort.
As expected, the ITFC algorithm reaches the best TFC in
all nine software systems, but the average rank of OSE is
5.9. The algorithm of Briand et al. reaches the best OSE in
all nine software systems, but the average rank of TFC is
6.7. The algorithms considering the simulation effort and
the test focus are the two heuristic approaches “Simulated
Annealing” and “Genetic”. These two algorithms compute
orders with the best fitness (average rank 1.4 respectively
2.3, Table IV). In the test focus consideration only the
ITFC algorithm is better than these two algorithms which
reach an average rank of 2.1 respectively 2.9. As can be
seen in Table V the Simulated Annealing algorithm
integrates about 88% of all test focus dependencies
correctly, the Genetic algorithm about 67%. In minimizing
the simulation effort only the algorithm of Briand et al. is

better than the Simulation Annealing algorithm (average
rank 2.6). The Genetic algorithm reaches an average rank
of 4.0 after the algorithm of Tai and Daniels (average rank
3.4) in minimizing the TFC.

TABLE IV. AVERAGE RANK PER ALGORITHM (SECOND
EXPERIMENT)

Fi
tn

es
s

T
FC

O
SE

St
ub

be
d

Fi
le

s

St
ub

be
d

D
ep

en
de

nc
ie

s

St
ub

be
d

Se
rv

ic
e

C
al

ls

St
ub

be
d

A
tt

ri
bu

te

A
cc

es
se

s

B
ro

ke
n

In
he

ri
ta

nc
es

ITFC 3.4 1.0 5.9 4.8 4.7 4.7 4.9 5.9

Tai&Daniels 5.4 6.2 3.4 3.8 4.7 5.0 3.6 1.0
Simulated
Annealing 1.4 2.1 2.6 3.8 3.2 2.8 2.8 2.1

Genetic 2.3 2.9 4.0 5.7 5.1 4.9 4.8 3.3

Briand 4.0 6.7 1.0 1.4 1.0 1.0 1.2 1.0

LeTraon 4.3 4.3 4.1 1.6 2.3 2.8 3.7 4.3

Random 7.0 4.7 7.0 7.0 7.0 6.9 7.0 7.0

The second experiment has shown that an integration

test order can consider the test focus and minimize the
simulation effort. The best algorithm in considering both is
Simulated Annealing followed by the Genetic algorithm.
The disadvantage of the heuristic algorithms is their long
duration to compute an integration test order. In all nine
software systems they took the longest time to compute the
integration test order.

TABLE V. CORRECTLY INTEGRATED TEST FOCUS
(SECOND EXPERIMENT)

IT
FC

T
ai

 &

D
an

ie
ls

Si
m

ul
at

ed

A
nn

ea
lin

g

G
en

et
ic

B
ri

an
d

L
e

T
ra

on

R
an

do
m

-
ba

se
d

Correctly integrated
test focus in % 100 13.26 88.07 66.69 10.13 33.78 27.56

The results of our experiments show that it is very

important to select the algorithm that fits best to the
current project context. If the aim is to derive an
integration test order that minimizes the simulation effort,
the algorithm of Briand et al. should be used. If an
integration order is required that integrates the
dependencies selected as test focus, the ITFC algorithms
should be used. Both algorithms are very fast and derive
an order that fits the corresponding criterion. If one is
interested in an order that considers both, the heuristic
algorithms are the only choice.

V. SUMMARY
In this paper we presented an approach to measure the

test focus consideration of a given integration test order.
Within a first experiment we compared several algorithms

how well they consider the test focus and the simulation
effort. Afterwards we adapted the three heuristic
approaches to better consider the test focus and the
simulation effort and applied them again to software
systems. The results show that the heuristic approaches
Simulated Annealing and Genetic algorithm can be used to
derive integration test orders that optimize the test focus as
well a the simulation effort.

The disadvantage of both heuristic approaches is the
long duration for deriving an order. In our current work,
we analyze how the duration can be reduced by using
better starting orders instead of random starting orders. In
further experiments we will try to use orders computed by
the ITFC algorithm or the algorithm of Briand et al. as
starting orders and reduce the number of iterations.

REFERENCES
[1] R. Binder, Testing Object-Oriented Systems”. Addison-Wesley,

2000
[2] L. Borner, and B. Paech, “Testfokusauswahl im

Integrationstestprozess” in Liggesmeyer P, Engels G, Münch J,
Dörr J, Riegel N (Ed.): Software Engineering (SE 2009)
Fachtagung des GI-Fachbereichs Softwaretechnik in
Kaiserslautern, LNI P-143, pp. 139-150, GI 2009

[3] L. Borner, B. and Paech, “Using Dependency Information to Select
the Test Focus within the Integration Testing Process”, to appear at
Taic Part 2009

[4] L. Borner, T. Illes, and B. Paech, “The Testing Process - A
Decision Based Approach” In: Proceedings of The Second
International Conference on Software Engineering Advances
(ICSEA 2007), Cap Esterel (France), p. 41, IEEE Computer
Society 2007

[5] L.C Briand, J. Feng, and Y. Labiche, “Using Genetic Algorithms
and Coupling Measures to Devise Optimal Integration Test
Orders”, 14th International Conference on Software Engineering
and Knowledge Engineering (SEKE 2002), IEEE Computer
Society, 2002

[6] L.C. Briand, Y. Labiche, and Y. Wang, “An Investigation of
Graph-Based Class Integration Test Order”, IEEE Transactions on
Software Engineering, IEEE Press 2003

[7] R. E. Burkard, and F. Rendl, “A thermodynamically motivated
simulation procedure for combinatorial optimization problems”
European Journal of Operational Research, Volume 17, Issue 2,
August 1984, Pages 169-174

[8] Y. Le Traon, T. Jéron, J.M. Jézéquel, and P. Morel, “Efficient
Object.Oriented Integration and Regression Testing”, IEEE
Transactions on Reliability, IEEE Computer Society 2000

[9] G.J. Meyers, “The Art of Software Testing”, John Wiley & Sons,
New York, 1979

[10] T. Illes-Seifert, and B. Paech, “Exploring the relationship of a file's
history and its fault-proneness: An empirical study “ In:
Proceedings of the Testing: Academic & Industrial Conference -
Practice and Research Techniques (TAIC-PART), Windsor (UK),
August 29-31, 2008, pp. 13-22, IEEE Computer Society 2008

[11] T. Illes-Seifert, and B. Paech, “Exploring the relationship of
history characteristics and defect count: an empirical study” In:
Devanbu P T, Murphy B, Nagappan N, Zimmermann T (Hrsg):
Proceedings of the 2008 Workshop on Defects in Large Software
Systems (DEFECTS 2008), held in conjunction with the ACM
SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA 2008), Seattle, (USA), July 20, 2008, pp. 11-15,
ACM 2008

[12] K. Tai, and F. Daniels, “Test Order for Inter-Class Integrations
Testing of Object-Oriented Software”, 21st International Computer

Software and Applications Conference (COMSAC 1997), Rio de
Janeiro (Brazil), ACM 1997

[13] R. Tarjan, “Depth-First Search and Linear Graph Algorithms”,
SIAM J. Comput. Volume 1, Issue 2, pp. 146-160. 1972

