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Abstract—Existing software systems consist of thousands of 
software components realizing countless requirements. To 
fulfill these requirements, components have to interact with or 
depend on each other. The goal of the integration testing 
process is to test that the interactions between these 
components are correctly realized. However, it is impossible to 
test all dependencies because of time and budget constraints. 
Therefore, error-prone dependencies have to be selected as 
tests. This paper presents an approach to select the test focus in 
the integration test process. It uses dependency and error 
information of previous versions of the system under test. 
Error-prone dependency properties are identified by statistical 
approaches and used to select dependencies in the current 
version of the system. The results of two case studies with real 
software systems are presented. 

Keywords; integration test, dependency information, test 
focus selection  

I.  INTRODUCTION 
The huge number of software components of today’s 

software systems challenges testers in the unit, integration 
and system testing process. While the unit testing process 
addresses the single components and the system testing 
process checks that the system requirements are correctly 
realized, the integration testing process focuses on the 
dependencies between software components. The goal of the 
integration testing process is to show that the dependencies 
are realized correctly. “Integration testing is a search for 
component faults that cause intercomponent failure.” ([3], p 
629)  

In every testing process several decisions have to be 
made to successfully control, execute and finish the process 
[5]. One of the main decisions is the test focus selection. The 
test focus represents the parts of the system that have to be 
tested more extensively than parts not selected. This is 
necessary because of the limitations of available resources 
(time, budget).  

To spend these resources wisely, testers have to select the 
parts of the system that are error-prone, i.e. that have a 
higher probability to contain an error. Several approaches 
can be found to predict error-prone components, using 

information of previous versions of the systems ([2], [10], 
[11], [14], or [17]). However, these approaches focus on 
components only. Therefore, they can only be used in the 
unit testing process, where single software components are 
tested.  

This paper presents a new approach to predict error-
prone dependencies in a software system. A dependency is a 
unidirectional relationship between two components. One 
component (dependent component) depends on the 
functionality of a second component (independent 
component). A dependency is characterized by several 
properties. Between two components A and B only two 
dependencies can exist, one unidirectional dependency from 
A to B and vice versa from B to A.  

In our approach we consider source code files as software 
components and use dependencies between these files to 
select the test focus. All dependency properties considered 
can automatically be extracted from the source code by using 
a source code analyzer. Previous versions of the system 
under test are used to identify properties that correlate with 
the number of defects in the source code files. To uncover 
correlations between the properties and the number of errors, 
the statistical test of Kruskal and Wallis [9] is used. 
Correlations that are persistent in all former versions are 
used to select the dependencies to be tested in the current 
version of the system. 

The following sections are organized as follows. Section 
2 explains the properties that are used to characterize a 
dependency. Section 3 gives an overview of the whole 
approach. It is followed by a detailed description of two case 
studies of real large-sized software systems. In section 5 an 
overview of existing approaches is given. The last section 
summarizes the paper and the experiences we gathered in the 
case studies. 

II. DEPENDENCY PROPERTIES 
Our approach uses 13 different properties to characterize 

a dependency. These properties were gathered from several 
existing approaches: [7], [8], [13], or [26]. We choose 
properties that can automatically be extracted with a source 
code analyzer. In our work we used the open source tool 
SISSy (Structural Investigation of Software Systems [22]). 



This tool analyzes source code files of several programming 
languages and exports an abstract model of the source code 
into a data base. The required information about 
dependencies and their properties can be extracted from the 
model by simply using SQL-Queries. For this, we use a 
small self-developed tool that manages the queries of the 
database and creates a file that can be used in the statistical 
tool SPSS [23]. 

In our research work we focus on source code files 
because several approaches exist to determine the number of 
errors per file [15], [19] which is required to identify the 
most error-prone dependency properties. The properties of 
dependencies between source code files are based on 
dependencies between classes in an object-oriented system. 
The dependencies between classes have to be mapped to 
dependencies between files. This is necessary because a 
source code file can contain more than one class. The 
mapping adheres to the following mapping rules: 

 
Rule - Inheritance: A dependent file A inherits from an 

independent file B, if at least one class in A is a sub-class of a 
class in file B.  

 
Rule - Service Call: A dependent file A calls at least one 

service of an independent file B, if at least one class in A 
calls at least one method of a class in B. 

 
Rule - Attribute Access: A dependent file A accesses at 

least one attribute of an independent file B, if at least one 
class of file A accesses at least one attribute in the file B. 

 
Using these mapping rules, several properties of 

dependencies between source code files can be used in our 
approach. The properties can be divided into two main 
categories: inheritance and client/server. 

A. Inheritance 
A dependency with inheritance properties exists, if there 

is at least one class in the dependent file that is a sub-class of 
a class in the independent file. Three modifications in an 
inheritance dependency are interesting for the integration test 
process: adding new services, adding new attributes, and 
overriding existing services. In all three cases the sub-class 
changes the super class by adding a new functionality and/or 
by modifying existing services. This is important, because 
the concept of sub-typing ([13]) allows the use of a sub-class 
in the source code where a super class is expected. If the sub-
class changes the behavior of the super class, it can lead to 
an error. Therefore, it is important to look for correlations 
between the number of errors and the amount of 
modification. The following properties are used. The number 
of new attributes indicates how many attributes are added in 
sub-classes in the dependent file.  

The number of new services indicates how many services 
are added in the sub-classes in the dependent file and the 
number of overridden service indicates how many services 
of the super classes in the independent file are overridden by 
the sub-classes in the dependent file. 

B. Client/Server 
A client/server dependency exists, if at least one class in 

the dependent file accesses attributes and/or calls services of 
at least one class in the independent file. Several properties 
can be interesting for the integration tester, because they can 
give hints on possible sources of error. The number of 
accessed attributes represents the number of attributes that 
are accessed by the classes in the dependent file. Every 
attribute is counted only once, even if it is accessed more 
than once. Accessing an attribute of a foreign class can 
influence the behavior of the class and may lead to an 
inconsistent behavior in one or both classes. The number of 
services called indicates how many services of classes in the 
independent file are called by classes in the dependent file. 
Every service is counted only once even if the service is 
called more than once. A service call may fail because of 
different reasons. Possible faults can be found in [4] (p. 162), 
e.g. “Message sent to wrong supplier”, “Message not in 
supplier”, or “documentation/code mismatch”. Furthermore, 
the input and output parameters can be sources of failure. 
The number of input parameters sums up all input 
parameters that are used in the services called by classes in 
the dependent file in the classes in the independent file. As 
stated in [16] an input parameter may be misinterpreted by 
the server (the called class). The number of services with at 
least one input parameter represents the number of all 
services called by the client that uses at least one input 
parameter. The number of complex input parameter sums up 
the number of complex input parameters that are used in the 
services called by the classes in the dependent file. An input 
parameter is complex if it is a class itself and not a simple 
data type like Integer or Character (see Java programming 
language). A complex parameter can encapsulate several 
states, and changing a state may influence the behavior of the 
calling client, the server or the parameter object itself. The 
number of services with complex output indicates the number 
of services called by the client that return no simple results. 
This complex result may be misinterpreted by the client, 
which will lead to a failure. The number of services with 
parameters of the same type comprises all services called by 
the client that have at least two parameters of the same type. 
Calling a method with at least two input parameters of the 
same kind can lead to an error, as the parameter may be 
swapped at developing time without a compiling error. 
However, at runtime the swapped parameter may lead to a 
faulty system behavior.  

From the properties already presented, three new 
properties can be computed that cannot be extracted directly 
from the source code: average number of input parameters 
per service call, average number of complex input 
parameters per service call, and percentage of service calls 
with complex output. The first one is computed by dividing 
the number of input parameters by the number of services 
called. The second one is computed by dividing the number 
of complex input parameters by the number of services 
called and the last one is computed by the number of services 
with complex output divided by the number of services 
called. 



III. TEST FOCUS SELECTION 
Our approach to test focus selection for the integration 

testing process is based on information from previous 
versions of the system. An overview of all steps that have to 
be performed can be found in Figure 1. All steps are 
necessary, because “There is no universal metric or 
prediction model that applies to all projects” [12], i.e. there 
are no dependency properties that can be used in all software 
systems to select the test focus. Correlations that were 
identified for a software system A and its previous versions 
do not have to exist in a software system B.  

 

 
Figure 1 Test focus selection approach  

Our approach is divided into three main steps. First of all, 
the dependency properties that are to be used in the 
correlation analysis have to be identified. In our case studies 
we use 13 different properties to characterize a dependency. 
All 13 properties can be easily extracted from the source 
code of the system under test. However, it is also possibly to 
use more or less than these 13 properties. Second, the 
previous versions of the system have to be analyzed and 
finally, the identified correlations are used to select the test 
focus of the current version. 

A. Analyzing Previous Versions 
In the second main step the previous versions have to be 

analyzed. For every version to be analyzed, four different 
sub-steps are performed (see Figure 1). First, the number of 
errors per file has to be computed. These numbers are later 
used to identify correlations between these numbers and the 
dependency properties. In [19] a heuristic approach is 
introduced to use information of a version control system 
(e.g. Subversion [24]) and a bug tracking system (e.g. 
Bugzilla [20]) to determine the number of errors per source 
code file. Within the bug tracking system uncovered defects 
are documented. Every defect gets a unique identifier (ID). 
Every time a developer fixes a defect, he/she has to update at 
least one source code file. These files are checked into the 
version control system and a new revision (or version) of the 
files and the system are automatically created. For every 
check-in the developer adds a comment to describe what 

he/she has done, for example “#1234 fixed”, where “#1234” 
is the ID of the defect he/she fixed. Zimmermann et al. 
propose to search for all defect IDs within the check-in 
comments to identify all files that had to be changed during 
the fixes. This information is used to determine the number 
of errors per file. 

In parallel the dependencies of the version and their 
properties have to be identified. The result of this step is a 
dependency table containing all dependencies. An example 
of a dependency table extracted from the source code of the 
open source tool Eclipse [20] can be seen in Table 1. Every 
row represents a dependency between two files. The first two 
columns contain the file name 1  of the dependent, 
respectively the independent file. The following columns 
represent the properties of a dependency. The third column 
for example indicates the number of attributes of the 
independent file that are accessed by the dependent file and 
the fourth column contains the number of services of the 
independent file that are called by the dependent file. This 
dependency table is extended by the number of errors per file 
for the dependent and independent file (see last two columns 
in Table 1). The information about the properties and errors 
is used in step 2.4 to identify the correlations between them. 

TABLE 1 EXAMPLE OF A DEPENDENCY TABLE 

 
 

In our approach the statistical test of Kruskal and Wallis 
is used to identify correlations. This test is the nonparametric 
alternative to a one-way ANOVA [9] and is used if the 
assumption of the one-way ANOVA is not fulfilled. The test 
of Kruskal and Wallis requires that the independent variable 
(a property of the dependencies) is ordinal scaled. However, 
as one can see in Table 1 the dependency properties are ratio 
scaled. Therefore, we have to transform the ratio scale into 
an ordinal scale. This is done in step 2.3 by using quantiles 
[9]. The usage of quantiles enables us to create disjunctive 
groups of nearly the same size. For every property each 
dependency is put into one group (quantile). This group 
contains all dependencies with similar values of this 
property. For example “Group 1” contains all dependencies, 
where only one service is called, “Group 2” contains all 
dependencies where two and three services are called and so 

                                                             
1 For the sake of readability the full path names of the files 
are left out. 



on. The division of the dependencies into quantiles can be 
done automatically by a statistic program like SPSS [23].  

The results of steps 2.1, 2.2 and 2.3 are used in step 2.4 to 
identify correlations between the number of errors and the 
dependency properties. For every property we use the 
Kruskal-Wallis-H test. We check whether the property has a 
correlation with the number of errors of the dependent and/or 
the independent file. For every group the Kruskal-Wallis-H 
test computes the average rank based on the number of 
errors. The higher the averages rank the higher is the number 
of errors. The average rank for each group can be graphically 
represented. Such a representation can be seen in Figure 2. It 
is taken from our case study and represents results of the 
correlation analysis of the software system Eclipse in version 
2.0. 

 

 
Figure 2 Results of a Kruskal-Wallis-H test (Eclipse 2.0) 

This figure shows the average rank in the groups of the 
property Number of called services. As one can see, the first 
group “1” where only one service is called has the lowest 
average rank (28,240) and the last group “>4” has the highest 
average rank (30,960). In our approach we are only 
interested in the group with the highest average rank, 
because this group can be used to select the test focus in the 
later steps. Furthermore, we are interested in groups that 
range above the average rank of all dependencies 
(represented by the solid horizontal line in the diagram). If 
we find the highest group of a property and if it is above the 
average rank of all dependencies, we have to test whether 
this group significantly differs from all the other groups of 
the considered property. For example in Figure 2 we test 
whether the group “>4” significantly differs from the groups 
“1”, “2” and “3”. If this is not the case, the correlation found 
is not statistically significant. A first indicator is the 
computed significance of the Kruskal-Wallis-H test. It 
indicates whether at least two groups are significantly 
different or not. However, if at least two groups differ, the 
test cannot show which ones. If the test indicates that no 
groups differ significantly, no statistically significant 
correlation between the property and the number of errors is 

found. However, if at least two groups differ, more tests are 
required. We use the statistical test of Mann and Whitney. 
This test is applied to two groups and checks whether the 
groups differ significantly. We apply the Man-Whitney-U 
test to all combinations of the group having the highest 
average rank that is above the average rank of all 
dependencies with all the groups not selected of the property. 
For the example in Figure 2 we have to perform 3 Mann-
Whitney-U tests: for the combination (1; <4), (2;<4) and (3-
4;<4). Only if all three tests indicate that the groups 
significantly differ, we found a correlation between the 
property and the number of errors2. 

 

 

Figure 3 Example of a non-trivial correlation  

In our approach we distinguish between two types of 
correlations: trivial and non-trivial correlations. A trivial 
correlation is a correlation, where the highest average rank 
can be found in the highest-valued group (referring to the 
order of the groups) in respect of the property considered. An 
example of a trivial correlation is shown in Figure 2. A non-
trivial correlation is a correlation, where the group with the 
highest average rank does not contain the dependencies with 
the highest values in respect of the property considered. In 
other words the group with the highest average rank is not 
the group on the right side of the diagram. An example of a 
non-trivial correlation can be found in Figure 3. As shown, 
the second group (0.0-0.09 complex input parameters per 
service calls) has the highest average rank. 

For every property we have to perform the Kruskal-
Wallis-H test twice: first, to identify a correlation between 
the property and the number of errors in the dependent file 
and second, to identify a correlation between the property 
and the number of errors in the independent file. 

                                                             
2 To reduce the risk of Type I errors, Bonferroni's correction 
[1] has to be applied.  



B. Selecting the Test Focus 
The last main step of our approach uses the correlation 

information gathered in the second main step. A correlation 
can be used for the test focus selection, if it exists in all of 
the previous versions. All properties that have a correlation 
between the numbers of errors of the dependent and/or the 
independent file (as defined above) are used to select the test 
focus for the current version of the system. However, to get 
better prognostic results, the threshold (average rank of all 
dependencies) has to be increased, because we are interested 
in the properties that are highly above the average rank of all 
dependencies. An existing correlation is used for the test 
focus selection, if and only if the group (according to a 
property) with the highest average rank is above a given 
threshold. As we defined earlier, a correlation only exists, if 
the group with the highest average rank is higher than the 
average rank of all dependencies. To compute the threshold 
for the test focus selection, we increase the average rank of 
all dependencies by a given percentage. In Figure 2 and 
Figure 3 the dotted horizontal line indicates the new 
threshold that is 5% higher than the average rank of all 
dependencies. The new threshold can be computed by the 
following formula: 
 

Average Rank + Average Rank * Percentage 
 
If the average rank of the group with the highest rank is 

above the computed threshold, the corresponding group of 
the property is used in the test focus selection. As one can 
see, the property in Figure 2 will be used. The percentage 
depends on the information about the errors that are 
available. For example, if there is only a small number of 
files that contain a small number of errors, the average rank 
of all groups is very near to the average rank of all 
dependencies (see case study in section 4.2.). In this case the 
percentage value has to be very small to compute the 
required threshold. The following formula can be used to 
estimate the required percentage value. 

 
         max(ARprop)- ARdep 

Pdep = 2 * _____________________________  
        Ndep * Nprop 

 
Pdep … Percentage value of dependent file 
ARprop_i… Average Rank of highest property group  
ARdep …Average Rank of all dependencies 
Ndep … Number of all dependencies 
Nprop … Number of correlating properties 

 
The main idea of the formula is to use the maximal 

difference of the group with the highest average rank of all 
correlating properties and the average rank of all 
dependencies. In our case studies this formula works fine to 
determine a first estimation for the threshold.  

Before we can select a test focus, the dependencies and 
properties of the current version have to be identified (step 
3.1). The result is a dependency table similar to the 
dependency table represented in Table 1, but without the 
number of errors per file. In the next step (3.2) the 

dependencies have to be grouped using the same method as 
in step 2.3. If we used deciles (dependencies divided into 10 
groups) in the previous steps, we also have to use deciles 
here.  

In the last step we have to select all error-prone 
dependencies as a test focus for the integration testing 
process. 

 
Definition: A dependency is error-prone, if it has at least 

one error-prone property and is assigned to a group with the 
highest average rank in previous versions.  

 
Definition: An error-prone property is a property that 

correlates with the number of errors of the dependent or 
independent file in previous versions.  

 
Using this information, we can assign a test priority to 

every dependency. A dependency with no error-prone 
property gets No Test Focus. A dependency that has one or 
more properties that correlate with the number of errors of 
the dependent files gets Test Focus Dependent File. A 
dependency that has one or more properties that correlate 
with the number of errors of the independent files gets Test 
Focus Independent File. The test priority Test Focus Both 
Files indicates that the dependency possesses properties that 
correlate with the number of errors in the dependent and 
independent file. 

The test priority indicates which dependencies should be 
tested. Moreover, it gives hints on the error location, i.e. 
whether more errors are likely to be found in the 
independent, the dependent or in both files. 

IV. CASE STUDIES 
We applied our approach in two case studies. We chose 

two real large-sized software projects written in the 
programming language Java. For both projects we used two 
previous versions of the system to identify the correlation 
between the number of errors and the dependency properties. 
These correlations are used in a third version to select the 
test focus of this version. In a last step we demonstrate that 
the selected dependencies are more error-prone than the ones 
not selected. 

The first system we applied our approach to is the open 
source development tool Eclipse [21]. For this tool the 
number of defects is available for three versions (2.0, 2.1 and 
3.0) in [18]. For this reason we only use two previous 
versions to identify correlations between errors and 
properties. The second system the approach was applied to is 
a commercial tool to manage and monitor financial 
subventions. This tool does not define versions in the same 
sense as Eclipse. The tool is continuously enhanced by new 
functionalities. To select the versions to be used in our case 
study, we chose three different points in time where large 
numbers of errors could be found. To compare the results of 
both case studies, we also chose two versions of the second 
tool to identify the correlations and to select the test focus for 
the third version. 



A. Eclipse 
Eclipse is a Java IDE (Integrated Development 

Environment) to support developers to create, compile, 
debug and execute source code. It is realized itself in the 
programming language Java and can be downloaded from 
[21]. In our work we analyzed the versions 2.0 and 2.1 to 
identify the correlations. Version 3.0 was used to select the 
test focus and to check whether the more error-prone 
dependencies are selected. A list of defects per file is 
provided by Zimmermann et al. in [18]. Zimmermann et al. 
in their work distinguish between two kinds of errors: pre-
release and post-release errors. In our work it is not 
necessary to distinguish between these two types. Therefore, 
the number of errors is the sum of the pre- and post-release 
errors. 

The Version 2.0 consists of 6,747 source code files and 
1,361,739 lines of code (LOC). We identified 56,765 
dependencies between these files. Version 2.1 consists of 
7,908 files and 1,678,952 LOC. 71,182 dependencies can be 
identified between these files. In both versions 5.2% of the 
dependencies have inheritance properties only, 5.7% 
dependencies have inheritance and Client/Server properties 
and 89.1% dependencies have Client/Server dependencies 
only. 2,891 (43%) files of version 2.0 and 2,426 file (31%) 
of version 2.1 contain at least one error (see [18]).  

In a first step we identified the dependencies in version 
2.0 and version 2.1. Furthermore, the properties of every 
dependency were identified and documented by SISSy. We 
group all dependencies into ten groups (deciles) according to 
the properties and perform the Kruskal-Wallis-H tests to 
every property. 

As a result we found that in version 2.0 11 properties 
correlate with the number of errors in the dependent file as 
defined is section 2.1. Furthermore, we found eight 
properties that correlate with the number of errors of the 
independent file. In version 2.1 we identified ten properties 
that correlate with the number of errors in the dependent file 
and seven properties that correlate with the number of errors 
in the independent file. All correlations found are shown in 
Table 2. The table contains all 13 properties (column 1) and 
the identified correlations for Eclipse 2.0 (column 2 and 3) 
and Eclipse 2.1. A positive value X in a cell indicates that for 
a given property the Xth group has the highest average rank 
and is above the computed threshold of 5% for version 2.0 
respectively 6.2 for version 2.1 and significantly differs from 
all other groups. A negative value indicates that there is no 
correlation between this property and the corresponding 
number of errors. One example: For the property # Services 
called (row 5) and the version 2.0 the group with the highest 
average rank for the dependent file (column 2) is the group 
“10”. The average rank of this group is above the threshold 
and significantly differs from all other groups. The property 
Average number of input parameters (row 12) shows no 
correlation with the number of errors in the dependent file in 
version 2.0. This is indicated by the value “-1” in the 
corresponding cell. 

A cell with a gray background indicates that a correlation 
between the property and the number of errors in the 

dependent/independent file exists in both versions 
considered, i.e. in both versions the group with the highest 
average rank is the same. For example in both versions the 
group with the highest average rank for the property # 
Services called (row 5) is “10” for the dependent file.  

In most cases the groups with the highest average rank 
are the groups that contain all dependencies with the highest 
values of the given property (mostly group “10”). That 
means most of the uncovered correlations are trivial 
correlations. However, there are also non-trivial correlations. 
A non-trivial correlation is indicated by a positive cell value 
smaller than “10”, for example in row 11. The group with the 
highest average rank for the property Average number of 
complex input parameters is “4”. This group significantly 
differs from the other groups, has an average rank that is 
above the threshold and exists in both versions for the 
dependent and independent file. 

TABLE 2 PROPERTY CORRELATIONS (ECLIPSE) 

Eclipse 2.0 Eclipse 2.1 

Property 
Dependent 

File 
Independent 

File 
Dependent 

File 
Independent 

File 

# Overridden services 10 -1 10 -1 

# New Services 10 -1 10 -1 

# New Attributes 10 -1 -1 -1 

# Attribute Accesses 10 10 10 -1 

# Services called 10 10 10 10 

# Complex Input 
Parameter 10 9 10 -1 

# Input Parameter 10 -1 -1 10 

# Services with 
Complex Output 10 10 10 10 

# Services called with 
at least one Input 
parameter 

10 10 10 10 

# Services called with 
two Parameters of the 
same type 

10 -1 -1 5 

Average number of 
complex input 
parameters 

4 4 4 4 

Average number of 
input parameters -1 8 -1 -1 

Percentage of Services 
with complex output -1 5 7 5 

 

The information contained in Table 2 is used to select the 
test focus for Eclipse 3.0. All properties with cells that are 
highlighted with a gray background are used to select the test 
focus of version 3.0. In a first step the 96,476 dependencies 
and their properties are identified. Next, the dependencies are 
grouped according to their properties. Afterwards those 
groups of dependencies are selected that had the highest 



average rank in the previous versions. As a result 1,352 
dependencies are selected because they possess properties 
that correlate with the number of errors in the dependent file. 
7,737 dependencies possess properties that correlate with the 
number of errors in the independent file and 5,230 
dependencies are selected because they possess properties 
that correlate with the number of errors in both files. That 
means about 16% of all dependencies in version 3.0 are 
selected as test focus.  

To check that we have selected the right dependencies as 
test focus, we compute the average rank of the selected test 
focus. Figure 4 represents the average rank of the selected 
test focus divided by the test priorities Not Test Focus, Test 
Focus Dependent file, Test Focus Independent File and Test 
Focus Both Files. The average rank is computed for the 
number of errors in the dependent file (light gray bar) and 
the number of errors in the independent file (dark gray bar). 
As one can see, dependencies not selected as test focus have 
the smallest average ranks. The dependencies selected as 
Test Focus Dependent File have the highest average rank 
(54,975) of number of errors in the dependent file. The 
dependencies selected as Test Focus Independent File have 
the highest average rank (56,264) of number of errors in the 
independent file. Dependencies selected as Test Focus Both 
Files possess an average rank of errors in the dependent and 
independent file that is above the average rank of 
dependencies not selected as test focus. 

 

 

Figure 4 Average rank of selected test focus (Eclipse 3.0) 

B. Subvention Management Tool 
The subvention management tool is a highly distributed 

software system. It is used to register applications for 
subventions, offers tool support to check, refuse or accept 
applications, and monitors the money flow from the 
government to the companies. It is realized in Java and offers 
two different graphical user interfaces (Swing, HTML).  

It consists of about 23.000 source code files containing 
more than four million lines of code. It contains about 
153,000 dependencies between the source code files: 8,000 
dependencies with inheritance properties only, 12,000 
dependencies with inheritance and Client/Server properties 

and 133,000 dependencies with Client/Server properties 
only.  

At the beginning of the case study the number of errors 
per file had to be determined by using the information of a 
bug tracking system and the version control system 
Subversion. The realizing company uses Lotus Notes [25] as 
the documentation tool for errors. Every error is documented 
in Lotus Notes and gets a unique ID. If an error is fixed, the 
developer checks the changed source code files into the 
control version system. The system creates a new revision 
number. This revision number is added to the error report by 
the developer. The revision number is used to identify all 
files that have to be changed to fix an error. Using this 
information the number of errors can be determined.  

The tool has no fix release cycles and therefore no major 
releases are defined. We selected three snapshots of the 
system to perform our case study. These snapshots were used 
as versions. The first snapshot was from the end of June, the 
second from the end of July and the third from the middle of 
September of the same year. The first version contains 602 
files (2.62%) that have at least one error, the second 643 files 
(2.77%). At this time it was unclear whether such a small 
number of error-prone files could be used to find correlations 
between properties and the number of errors. However, as 
shown in Table 3, a lot of correlations were found. 

TABLE 3 PROPERTY CORRELATIONS (SUBVENTION) 

Version 1 Version 2 

Property 
Dependent 

File 
Independent 

File 
Dependent 

File 
Independent 

File 

# Overridden services -1 4 -1 -1 

# New Services 10 -1 10 -1 

# New Attributes -1 -1 -1 -1 

# Attribute Accesses -1 10 -1 8 

# Services called 3 -1 10 -1 

# Complex Input 
Parameters 7 10 -1 10 

# Input Parameters 9 10 -1 10 

# Services with 
Complex Output 2 -1 10 2 

# Services called with 
at least one Input 
parameter 

6 10 10 10 

# Services called with 
two Parameters of the 
same type 

5 -1 -1 10 

Average number of 
complex input 
parameters 

8 7 -1 7 

Average number of 
input parameters 10 -1 4 -1 

Percentage of Services 
with complex output 2 4 -1 4 

 



In the first version we found ten properties that correlate 
with the number of errors of the dependent file and seven 
properties that correlate with the number of errors of the 
independent file. In the second version five correlations 
between properties and the number of errors in the dependent 
file and eight correlations between properties and the number 
of errors of the independent file were found. However, only a 
few correlations could be used to select the test focus, 
because the groups of the correlating properties differ from 
version to version.  

As a result 18.7% of all dependencies in the third version 
were selected as test focus. 838 dependencies were selected 
as Test Focus Both Files. 27,920 dependencies were selected 
as Test Focus Independent File and 1,373 dependencies are 
selected as Test Focus Dependent File. To check that the test 
focus selection was correct we also computed the average 
rank. The results are shown in Figure 5. 

 

 

Figure 5 Average rank of selected test focus  
(Subvention Management Tool) 

As one can see, the dependencies with Test Focus 
Dependent File have the highest average rank (57,200) of the 
number of errors in the dependent file (second light gray 
bar). Dependencies selected as Test Focus Independent File 
have the highest average rank (56,952) of errors in the 
independent file. The average rank of dependencies with Test 
Focus Both Files is above the average rank of dependencies 
not selected as test focus. The small difference between the 
average rank of dependencies not selected and dependencies 
with Test Focus Both Files according to the number of errors 
in the independent file can be explained by the small number 
of all files that contain at least one error. 

V. RELATED WORK 
In the literature several approaches can be found that deal 

with defect prediction. They can be divided into three 
categories. Approaches of the first category try to predict the 
probability that a file will contain at least one error (e.g. [2], 
[15]). The second category predicts the exact number of 
errors that will be contained in a file (e.g. [14], [17]). The 
last category tries to predict the error density of a file (e.g. 
[10], [11]). Our approach belongs to the latter category. We 
identify dependencies with an error density above average 

Different statistical tests and approaches can be used to 
predict errors. Basili et al. uses in [2] the rank correlation 
coefficient by Spearman to identify correlations. In a second 
step they use linear regression to predict the probability that 
a file will contain an error. These statistical tests can only be 
used to identify trivial correlations. However, we are also 
interested in non-trivial correlations. Therefore, we use the 
Kruskal-Wallis-H test to identify the groups with the highest 
number of errors. 

In [18] Zimmerman and Nagappan state that One 
drawback of most complexity metrics is that they only focus 
on single elements, but rarely take the interactions between 
elements into account (page 531). They found out that not 
only the properties (metrics) of one single file should be used 
to predict errors. In fact the dependencies and their properties 
are important. However, their approach does not use 
properties of one single dependency. The authors aggregate 
the dependency information like the number of clients 
(dependent files) or the number of servers (number of 
independent files) within one file and therefore, they only 
identify correlations between file properties and the number 
of errors.  

None of the existing approaches uses properties of 
dependencies where a dependency only exists between two 
files. First ideas about the usage of dependency properties to 
select the test focus within the integration testing process can 
be found in [6]. There we use the one-way ANOVA to 
identify error-prone properties of dependencies. This 
analysis however cannot be used for every software system 
because of its assumptions [9]. Therefore the non-parametric 
Kruskal-Walli-H tests and the Mann-Whitney-U tests should 
be used as proposed in this paper. 

VI. CONCLUSION 
In this research paper we introduce an approach to select 

the test focus in the integration test process. We use 
information about the test objects of the integration test: the 
dependencies. We identify correlations between dependency 
properties and the number of errors of the dependent and 
independent files in previous versions of the software system 
under test. The correlations found are used to select the 
dependencies that have a higher probability to contain errors. 
The statistical tests used (Kruksal-Wallis-H and Mann-
Whitney-U test) can find trivial correlations as well as non-
trivial correlations.  

Two case studies indicate that our approach works fine. 
We apply our approach to real large-sized software systems 
and extract the dependencies between the source code files 
of the systems. We use information about the number of 
errors to identify the error-prone properties from two 
previous versions of the systems. Figure 4 and Figure 5 show 
that we selected error-prone dependencies. This can be seen 
by the average rank. Dependencies selected as Test Focus 
Dependent File and Test Focus Both Files have a higher 
average rank of errors in the dependent file (light gray bar) 
than not selected dependencies. Dependencies selected as 
Test Focus Independent File and Test Focus Both Files have 
a higher average rank of errors in the independent file (dark 
gray bar) than not selected dependencies. 



In our future research work we will focus on the 
improvement of the test focus selection approach to better 
predict the error-prone dependencies. We try to combine 
properties to decrease the number of selected dependencies 
with a higher number of errors in the dependent and 
independent files.  

Furthermore, the test focus supports the localization of 
possible errors, because it indicates whether the error is in 
the dependent file (test focus dependent file) or in the 
independent file (test focus independent file).  

One important advantage of our approach is the fact that 
nearly all steps of our approach can be performed 
automatically. Once the properties to be uncovered are 
specified, the dependencies and their properties can 
automatically be extracted by a source code analyzer (like 
SISSy). The computation of the number of errors per file can 
also be executed automatically. The statistical tests (Kruskal-
Wallis-H, Mann-Whitney-H) are mathematical formula that 
can easily be implemented. 
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