

Electronic version of an article published as Liggesmeyer P, Engels G, Münch J, Dörr J, Riegel N
(Hrsg): Software Engineering 2009, 02-06. März 2009 in Kaiserslautern, LNI P-143, pp. 151-
162

© [2009] Gesellschaft für Informatik e.V.

Die Originalpublikation ist unter folgendem Link verfügbar:

http://www.gi-ev.de/service/publikationen/lni.html

The vital few and trivial many: An empirical analysis of the
Pareto Distribution of defects

Timea Illes-Seifert, Barbara Paech

Lehrstuhl für Software Systeme, Institut für Informatik
Im Neuenheimer Feld 326

69120 Heidelberg 69120 Heidelberg
illes-seifert@informatik.uni-heidelberg.de

paech@informatik.uni-heidelberg.de

Abstract: The Pareto Principle is a universal principle of the “vital few and trivial
many”. According to this principle, the 80/20 rule has been formulated with the
following meaning: For many phenomena, 80% of the consequences originate
from 20% of the causes. In this paper, we applied the Pareto Principle to software
testing and analysed 9 open source projects (OSPs) across several releases. The
results show that a small number of files account for the majority of defects, even
across several releases. In contrast, there is no evidence that this small part of files
containing most of the defects also makes up only a small part of the system’s code
size. The contributions of this paper are twofold: It is the first study analysing the
Pareto distribution for OSPs. Second, it is the most detailed study that analyses the
Pareto distribution of defects comprising nine large OSPs which increases the
empirical body of knowledge in this area.

1 Introduction

The Pareto Principle, also known as the 80-20 rule has been originally analysed by
Vilfredo Pareto [Re05] who observed that 80% of property in Italy was owned by 20%
of the Italian population. Juran [JG88] generalized this principle he called the “vital few
and trivial many”, stating that most of the results in any context are raised by a small
number of causes. This principle is often being applied in several contexts, e.g. in sales,
stating that 20% of the customers are responsible for 80% of the sales volume. One of
the first studies that translated this principle to the software engineering area is reported
in [En79]. The author analyses the distribution of defects in an operating system
developed at IBM laboratories. The distribution of about 430 defects over about 500
modules has been analysed and confirms the Pareto Principle, i.e. approximately 80% of
the defects were contained in 20% of the modules.

Two main hypotheses related to the Pareto Principle form the basis of this study. First,
we want to analyse whether a small part of files accounts for the majority of defects.
Second, if this is the case, we want to determine whether this small part of files also
constitute a small part of the system’s code size. Knowing the validity of Pareto
Principle in the testing context is very valuable for testers, because they can focus their
testing activities on the “vital few” files accounting for most of the defects. From the

research perspective, this study increases the empirical body of knowledge in the area of
defect distribution. First, by replicating empirical studies conducted before, more general
conclusions can be derived. Second, to our knowledge, this is the first study that focuses
on the analysis of the Pareto Principle for OSPs. Thus, differences and similarities
concerning defect distributions in OSPs and commercial systems can be figured out. In
addition, this is the first study analysing this principle to that extent, including data from
9 large OSPs.

The reminder of this paper is organized as follows: The design of our study is described
in Section 2, including hypotheses, characteristics of the analysed projects, as well as
data collection procedures. In Section 3, the results of our empirical study are presented.
In Section 4, we discuss the threats to validity and in Section 5 an overview of related
work is given. Finally, Section 6 concludes the paper.

2 Study Design

In this paper, we use the definition of defects and failures provided in [IS07]: A defect
or fault is “a flaw in a component or system that can cause the component or system to
fail to perform its required function. A defect, if encountered during execution, may
cause a failure of the component or system”. Thus, a failure is the observable “deviation
of the component or system from its expected delivery, service or result“. Defect count
is the number of defects identified in a software entity. In this paper, we count the
number of defects of a file. The file a is more fault-prone than the file b if the defect
count of the file a is higher than the defect count of the file b. In the subsequent Sections
details on the experiment are described.

2.1 Hypotheses

In this paper, the following hypotheses related to the Pareto Principle will be analysed:

• Hypothesis 1, Pareto distribution of defects in files: A small number of files
accounts for the majority of the defects.

• Hypothesis 2, Pareto distribution of defects in files across releases: If the
Pareto Principle applies to one release, then it applies to all releases of a
software project.

• Hypothesis 3, Pareto distribution of defects in code: A small part of the
system’s code size accounts for the majority of the defects.

• Hypothesis 4, Pareto distribution of defects in code across releases: If the
Pareto Principle applies to one release, then it applies to all releases of a
software project.

2.2 Subject Projects

In this study, we analysed 9 OSPs. As required in [Ha08], we applied the following

criteria to select the OSPs: (1) The project is of a large size in order to permit significant
results. Thus, the size of the selected projects ranges from about 70.000 LOC to about
240.000 LOC. (2) A well documented defect history is available. Thus, we searched for
projects for which a bug tracking system is available. (3) The project is mature so that
effects will have appeared if present. According to this criterion, we selected projects
with a number of check-ins in a versioning control system (we call them history touches
- HT) greater than 50.000. (4) The source code is available for at least one release. We
included one project, OSCache that does not fulfil the criteria defined above, in order to
compare the results obtained for all other projects with a smaller but mature1 project.

Apache Ant (Ant)2 is a Java application for automating the build process. Apache Formatting
Objects Processor (Apache FOP)3 reads a formatting object (FO) tree and renders the resulting
pages to a specified output, e.g. PDF. Chemistry Development Kit (CDK)4 is a Java library for
bio- and chemo-informatics and computational chemistry. Freenet5 is a distributed anonymous
information storage and retrieval system. Jetspeed26 is an open portal platform and enterprise
information portal. Jmol7 is a „Java molecular viewer for three-dimensional chemical structures.
OSCache8 is a Java application which allows performing fine grained dynamic caching of JSP
content, servlet responses or arbitrary objects. Pentaho9 is a Java based business intelligence
platform. TV-Browser 10 is a Java based TV guide. Table 1 summarizes the attributes of the
analyzed projects.

Table 1. Subject Programs

OS-Project Project since # Defects # HTs LOC # Files
1. Ant (1.7.0) 2000 4804 62763 234253 1550
2. FOP (0.94) 2002* 1478 30772 192792 1020
3. CDK (1.0.1) 2001* 602 55757 227037 1038
4. Freenet (0.7) 1999* 1598 53887 68238 464
5. Jetspeed2 (2.1.2) 2005 630 36235 236254 1410
6. Jmol (11.2) 2001* 421 39981 117732 332
7. Oscache (2.4.1) 2000 2365 1433 19702 113
8. Pentaho (1.6.0) 2005* 856 58673 209540 570
9. TV-Browser (2.6) 2003 190 38431 170981 1868

A * behind the data in the column “Project since” denotes the date of the registration of
the project in SourceForge11. For the rest, the year of the first commit in the versioning
system is indicated. The column “OS-Project” contains the name of the project followed
by the project’s latest version for which the metrics “LOC” (Lines of Code) and the
number of files have been computed. The 3rd and the 4th columns contain the number of
defects registered in the defect database and the number of HTs extracted from the VCS.

1 The project exists since 2000.
2 http://ant.apache.org/
3 http://xmlgraphics.apache.org/fop/index.html
4 http://sourceforge.net/projects/cdk/
5 http://freenetproject.org/whatis.html
6 http://portals.apache.org/jetspeed-2/
7 http://jmol.sourceforge.net/
8 http://www.opensymphony.com/oscache/
9 http://sourceforge.net/projects/pentaho/
10 http://www.tvbrowser.org/
11 http://sourceforge.net/

2.3 Data collection

Defect tracking systems contain information on the defects recorded during the lifetime
of a project, amongst others the defect ID and additional, detailed information on the
defect. However, they usually do not give any information which files are affected by the
defect. Therefore, information contained in VCS has to be analysed in order to compute
the number of defects per files. For this purpose, we extract the information contained in
the VCS into a history table in a data base. Additionally, we extract the defects of the
corresponding project into a defect table in the same data base. Then, we use a 3-level
algorithm to determine the defect count per file.

Direct search: First, we search for messages in the history table containing the defect-
IDs from the defect table. Messages containing the defect-ID and a text pattern, e.g.
“fixed” or “removed”, are indicators for defects that have been removed. In this case, the
number of defects of the corresponding file has to be increased. Keyword search: In the
second step, we search for keywords, e.g. “defect fixed”, “problem fixed”, within the
messages which have not been investigated in the step before. We use about 50
keywords. Multi-defects keyword search: In the last step, we search for keywords
which give some hints that more than one defect has been removed (e.g. „two defects
fixed“). In this case, we increase the number of defects accordingly. We used SPSS12,
version 11.5, for all statistical analyses.

3 Results

In this Section the results of this study will be presented.

3.2 Hypothesis 1: Pareto distribution of defects in files

The first hypothesis related to the 80/20 rule concerns the distribution of defects in files.
All OSPs presented in Section 2.2 have been analysed graphically in order to verify this
hypothesis. Figure 1 shows the Alberg Diagram suggested by Fenton and Ohlsson
[FO00] for the graphical analysis of the Pareto Principle. Thus, files are ordered in
decreasing order with respect to the number of defects. Then the cumulated number of
defects is plotted on the y-Axis of the Albert diagram relative to the percentage of files
(plotted on the x-Axis). For example, in the case of the Jetspeed2 project, 80% of the
defects are contained in 27% of the files. Figure 1(a) shows the distribution of defects of
all analysed OSPs within one Alberg diagram, whereas Figure 1(b) shows the percentage
of files accounting for about 80% of defects as a bar chart.

Consequently, approximately 80% of the defects are concentrated in a range of 1.3% (in
the case of the TVBrowser project) to 27.2% (in the case of the Jetspeed2 project) of
files. Thus, the TVBrowser project shows the strongest focus of defects on a very small
part of the files. Only one project shows a concentration of 80% of defects in clearly
more than 20% of the files. This is the case of the Jetspeed2 project, with 27.2%. In case
of the Pentaho project, 21.9% of the files contain 80% of the defects that can be

12 SPSS, http://www.spss.com/

considered much closer to the 20% formulated in the hypothesis.

Based on this analysis, Hypothesis 1 can be largely confirmed for OSPs: A small number
of files account for the majority of the defects in OSPs. 7 OSPs show an even stronger
focus of the majority of defects on a small part of files than required by the 80/20-rule.
This is the case of TVBrowser, Jmol, OSCache, CDK, Ant and Freenet. Two other
projects are closed to the 80/20 rule.

 (a)

27.2

21.9
18.6

10 8.8
6.2 5.6

3
1.3

0

5

10

15

20

25

30

Je
tsp

ee
d2

Pen
tah

o

Apa
ch

e

Freen
et Ant

CDK

OSCac
he

Jm
ol

TvB
row

se
r

OSP

%
 o

f d
ef

ec
ts

 c
on

ta
in

ed
 in

 8
0%

 o
f f

ile
s

 (b)

Figure 1 – Pareto distribution of defects. (a) Distribution of defects for each OSP in an
Alberg diagram; (b) Percentage of defects contained in 80% of the most fault-prone files

3.3 Hypothesis 2: Pareto distribution of defects in files across releases

In order to analyse this hypothesis, the percentage of the most fault-prone files
containing 80% of the defects has been computed for several releases of the OSPs. Table
2 shows the results. The first column contains name of the OSP, followed by the number
of the analysed releases. The next two columns indicate the absolute and, respectively,
the relative number of releases for which about 80% of the defects are concentrated in a
small percentage (below 25%) of files. The column “Range” indicates the range for the
concentration of defects. For example, the concentration of defects in the ANT project
ranges from 8.23% to 24.97% of the files depending on the analysed release.

Pareto distribution holds
for …

100% of defects contained
in less than 25% of the files.
This holds for …

OSP

Number of
analysed
releases

Absolute #
of analysed
releases

Percentage of
the analysed
releases

Range

Absolute #
of analysed
releases

Percentage
of the
analysed
releases

1. ANT 5 5 100%
8.23% - 24.97%

4 80%
2. ApacheFOP 4 4 100% 12.02% - 24.79% 1 25%
3. CDK 7 7 100% 3.14% - 20.56% 7 100%
4. Freenet 6 6 100% 1.95% - 17.29% 2 17%
5. Jetspeed2 3 2 66.67% 19.03% - 67.73% 0 0
6. Jmol 9 9 100% 1.52% - 17.42% 8 89%
7. OSCache 4 4 100% 3.95% - 13.98% 4 100%
8. Pentaho 3 2 66.67% 9.12% - 35.12% 1 33%
9. TVBrowser 4 4 100% 2.69% - 29.32% 3 75%

Table 2 – Pareto Distribution of defects in files across releases

For 7 of the 9 analyses OSPs, 80% of the defects are contained in less than 20% of the
most fault-prone files. The concentration of the defects ranges from 1.52% in the case of
the Jmol project to 35.12%, in case of one analysed release of the Pentaho project. One
exception is the Pentaho project. In one of the analysed releases, the defects are not
concentrated on a few files but rather distributed among 67.73% of the files.

In many releases of the analysed OSPs, we observed a high concentration of defects on a
very small number of files. Thus, we additionally determined the percentage of files that
account for 100%, i.e. for all defects in a system. The last two columns in Table 2 show
the absolute and relative number of releases for which 100% of defects are contained in
about 20 % of the files. Again, we used 25% of files as a threshold. In two thirds of the
analysed releases of the OSPs (30 of 45), 100% of the defects are concentrated in less
than 25% of the files. In 27 of 45 analysed releases, 100% of the defects are even
contained in less than 20% of the files.

Based on the results of these analyses, it can be concluded that the Pareto Principle
largely persists across several releases of a software project. The concentration intensity
can vary slightly from release to release.

3.4 Hypothesis 3: Pareto distribution of defects in code

In order to analyse the Pareto hypothesis for code, the percentage of code that accounts
for 80% of the defects contained in the most fault-prone files has been computed.
Consequently, this analysis determines if the small part of the files responsible for most
of the defects also represent a small part of the code. The results of this analysis are
shown in Figure 2. On the X-axis, the analysed releases of the OSPs are indicated13. The
line chart and the bar chart indicate for each release the percentage of files and the
corresponding percentage of code that account for approximately 80% of the defects. For
example, in the case of the Jmol 9 release, 10.18% of the files that account for 80% of
the defects make up 16.93% of the system’s code. Similarly, in the case of the Ant 1.6.1
release, 24.97% of the files that account for 80% of the defects make up 89.42% of the
system’s code.

16.93%

89.42%

10.18%

24.97%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

tbr
ow

se
r 2

.0

Jm
ol 9

CDK 1

tbr
ow

se
r 1

.0

tbr
ow

se
r 0

.9

CDK 20
05

Apa
ch

eF
OP 0.

94

fre
en

et
0.5

fre
en

et
0.5

.2

fre
en

et
0.5

.1

os
ca

ch
e 2.

4

an
t 1

.6.
5.

an
t 1

.7

os
ca

ch
e 2.

0.1
.

CDK 20
06

Jm
ol 1

0

Apa
ch

eF
OP 0.

93

Apa
ch

eF
OP 0.

2

os
ca

ch
e 2.

1

fre
en

et
0.7

an
t 1

.6

Jm
ol 1

1.2

an
t 1

.5.
3

pe
nta

ho
 0.

8.9

tbr
ow

se
r 2

.6

an
t 1

.6.
1

Je
tsp

ee
d2

 2.
0

OSP releases

%
 o

f c
od

e
vs

. %
 o

f f
ile

s
co

nt
ai

ni
ng

 8
0%

 o
f t

he
de

fe
ct

s

% of code % of files

Figure 2 – Pareto distribution of defects in code

The concentration of the majority of the defects on a small part of the system’s code is
true only for a small part of the OSP releases. About 5 releases show a concentration of
defects on less than about 25% of the code (TVBrowser 2.0, Jmol 9, CDK 1, TVBrowser
1.0, TVBrowser 0.9). Most of the analysed releases show a distribution of the defects on
about 30% to about 60% of the code. For a small part of the releases, the defects are
distributed on almost the whole system.

Based on this analysis, the hypothesis has to be rejected. A small part of the code
accounts for the majority of the defects only in a few of the analysed cases. In addition,
there is no evidence for the contrary hypothesis: If a small number of files account for
the majority of the defects, it is because these files contain the most code. This statement

13 This analysis comprises all releases of the OSPs for which the source code is available.

is true for a small part of the analysed OSPs only.

3.5 Hypothesis 4: Pareto distribution of defects in code across releases

Since the Pareto hypothesis on the distribution of defects in code has been rejected, the
hypothesis 4 has to be adjusted. For all cases, in which the Pareto hypotheses could be
confirmed: Does the Pareto distribution of defects in code hold for all or at least for the
most releases of an OSP? Despite the fact that Hypothesis 3 has been rejected, this
research question is important to be analysed. If this is the case, it means that for a small
part of OSPs the Pareto Principle is valid and it is worthwhile to perform further
analyses in order to determine characteristics of such programs and to find out factors
that favour such a distribution. Figure 3 show the distribution of 80% of the defects in
code across releases for all OSPs for which at least one release shows a concentration of
most of the defects on less than 20% of the code. The bar chart shows the percentage of
code that contains 80% of the defects, and the line chart shows the percentage of files
accounting for 80% of the defects. In the case of the CDK and the Jmol project, only a
single release shows a concentration of most of the defects on a small part of the code.
For the other analysed releases, the defects are distributed on about 30% to 63% of the
code. In the case of the TVBrowser project, three of four analysed releases show a
concentration of most of the defects on a small part of the code. The last analysed
release, however, shows a high distribution of the defects on about 88% of the code.

Based on the results of this analysis, the hypothesis can not be confirmed. A
concentration of most of the defects on a small part of the code in one release does not
mean that this concentration will persist in consequent releases.

30.78%

18.09% 16.93%

44.65%

63.24%

24.53%
20.38%

7.88%

88.63%

44.27%

2.69%

29.32%

20.56%17.44%

7.29%

10.18%

14.44%
17.42%

7.74%
4.30%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

OSP releases

%
 o

f c
od

e
vs

. %
 o

f f
ile

s
co

nt
ai

ni
ng

 8
0%

 o
f t

he
de

fe
ct

s

% of code % of files

% of code 30.78% 44.27% 18.09% 16.93% 44.65% 63.24% 24.53% 20.38% 7.88% 88.63%

% of files 17.44% 20.56% 7.29% 10.18% 14.44% 17.42% 7.74% 4.30% 2.69% 29.32%

CDK 2005 CDK 2006 CDK 1 Jmol 9 Jmol 10 Jmol 11.2 tbrowser 0.9 tbrowser 1.0 tbrowser 2.0 tbrowser 2.6

Figure 3 – Pareto distribution of defects in code across releases

4 Threats to validity

Internal validity is concerned with the degree to which conclusions about the causal
effect of the independent variables on the dependent variable can be drawn [Wo00]. One
threat to validity is that not all developers deliver meaningful messages when they
check-in files. Developers, for example, can also check in files without specifying any
reason, even though they had corrected a defect. Thus, the defect count of a file can be
higher than the defect count computed by our algorithm. This concern is alleviated by
the size of the analysed OSPs. External validity is concerned with the degree to which
results can be generalized [Wo00]. This issue is alleviated by the number and diversity
of the analysed OSPs. The more OSP programs show the same characteristics, the higher
the probability that other OSP programs would also show these characteristics.
Additionally, we choose programs from different application domains in order to
increase the representativeness of the study results. Furthermore, analyses of additional
programs that are intended in our future work would increase the external validity.

5 Related Work

There are several studies that analyse the Pareto distribution of defects in files. In
contrast to our study, that analyses several releases of an OSP, most of the studies
concentrate on analysing few or one releases of a system or do not detail the results per
release. An exception is the study reported in [OW02]. In contrast to our study, all other
studies consider commercial software. The Pareto distribution of defects in files is
largely confirmed by most of the authors, i.e. most of the defects in commercial software
concentrate on a small number of software entities (files or modules). The extent of the
concentration varies from program to program. This is similar to the results obtained by
studying OSPs in this paper.

The type of analysed defects differs from study to study. Roughly, the defect types can
be categorized into pre-release14 and post-release15 defects. In one study, only one defect
type has been analysed [En79]16. Three studies differentiate between pre-release and
post-release defects [AR07], [OW02] and [FO00]. All other studies analyse pre-release
and post-release defects altogether. When roughly categorizing the defects into pre-
release vs. post-release defects, the following conclusions can be drawn: (1) The Pareto
distribution of defects is true for pre-release, as well as for post-release defects. (2)
Authors, who did not make distinction between pre-release and post-release defects,
confirm the Pareto distribution of defects, too. (3) In the studies reported in [AR07],
[OW02] and [FO00] that differentiate between pre-release and post-release defects, the
concentration of defects on a small part of files is greater for post-release defects than it
is the case for pre-release defects. [OW02] observe that there is a very small part of

14 Pre-release defects are defects reported before release, usually by developers and testers.
15 Post-release defects are defects reported after release, usually reported by developers, testers and in some
case also by customers. The type of defects analysed and the reporters (when information is indicated in the
study) are summarized in Table 3.
16 The analyses consider pre-release defects.

defects reported after release and these defects are concentrated in less than 1% of the
files. The Pareto distribution for pre-release defects reported in [OW02] is similar to the
overall Pareto distribution (observed when pre-release and post-release defects have
been analysed altogether). A clear distinction between pre-release and post-release
defects is not possible for OSPs. Thus, the results are comparable to those studies that
considered pre-release and post-release defects altogether. The results of the studies in
literature are summarised in Table 3.

Reference Characteristics of the
analysed projects

Confir-
mation?

Relationship Kind of defects analysed

[En79] One release of the
operating system DOS/VS

Yes 21 – 78 pre-release defects: defects found
during system testing

20 – 87 (P1)
20 – 87 (P2)
20 – 80 (P3)

post-release defects17 [AR07] Three projects from a
large company in the
telecommunications
domain.

Yes

20 – 63 (P1)
20 – 70 (P2)
20 – 70 (P3)

pre-release defects

[OA96] Two consecutive releases
of a telecommunication
switching system

Yes 20 - 60 pre-release and post-release defects
altogether: defects reported during
function, system and site tests, as well
as during the first moths in operation21

[KK96] 5 consecutive releases of a
commercial
telecommunications
system

Yes 38 – 80 pre-release and post-release defects
altogether: defects reported as “Failure
Reports” reported from validation
teams and from customers

20-60 pre-release and post-release defects
altogether: defects reported during
function test and system test by testers

[FO00] Two releases of a major
commercial system
developed at Ericsson
Telecom AB

Yes

10 – 100 1st release
10 – 80 2nd release

post-release defects: defects reported
during operation21

[MK92] Two distinct data sets
from large commercial
systems: command and
control communication
system, medical imaging
system

Yes 20-65 pre-release and post-release defects
altogether: defects recorded during
system integration and test phases and
for the first year of program
deployment

Thirteen releases of a
large industrial inventory
tracking system

Yes 10 - 68
10 -100 (for the last
four releases)18.

pre-release and post-release defects
altogether: all kinds of defects
recorded in one of these phases:
development, unit testing, integration
testing, system testing, beta release,
controlled release, and general release.
The Pareto Priciple is also true for
pre-release and post-release defects.

[OW02]

 pre-release, 36 – 80,
3 – 80 (in later
releases)
post-release
1/2 - 80

separate analysis for pre-release and
post-release defects.

Table 3 – Pareto analyses in literature

[OW02] is the only study that analyses the Pareto distribution across several consecutive
releases. They observe that the concentration of defects on a small part of files becomes

17 It is not clear, whether post-release defects include the defects reported by the test team only or by the customers, too.
18 Concentration of defects on a small number of files gets increases as system matures.

stronger when the system matures. This result differs from those of the analysed OSPs.
In the case of the OSPs, the concentration remains low across nearly all releases of the
analysed OSPs, but the extent to which defects are concentrated on a part of the files
varies from release to release.

Similarly to the results of the OSP analyses, there is little evidence for the Pareto
distribution of defects in code. The strongest concentration of defects on a small part of
a system’s code size is reported in [OW02]. 10% of the files that account for a range of
68% - 100% of defects (depending on the analysed release) contain about 35% of the
system’s code. But the percentage of the code contained in the most fault-prone files
always exceeded the percentage of the files that contained the defects. The results
reported in [FO00], [AR07], and [KK96] do not provide evidence for the Pareto
distribution of defects in code as well. This is the case for both pre-release and post-
release defects as reported in [AR07]. The only study analysing the Pareto distribution of
defects in code across several releases is reported in [OW02]. In contrast to a decreasing
concentration of defects on a small part of files from release to release, the
corresponding percentage of code (contained in those fault-prone files) does not show
such a trend. 10% of the most fault-prone files that account for the most of the system’s
defects make up about 35% of the code mass. This result is similar to the results
obtained by analysing the Pareto distribution in code for OSPs reported in this paper.

6 Summary and Conclusions

In this paper, we presented the results of an empirical study on the distribution of defects
in software. To our knowledge, this is the first study that analyses the Pareto Principle
for open source projects. Additionally, in contrast to other studies considering a small
number of commercial systems, we analysed the fault distribution in a wide range of
open source projects across several releases.

Two of our initial hypotheses could be confirmed: A small number of files accounts for
the majority of the defects (Hypothesis 1). This is true even across several releases of
software (Hypothesis 2). The results widely correspond to the findings reported in
literature for commercial systems. Only one study reports the results of the analysis of
several consecutive releases of a software system [OW02]. The results of our study and
the results reported in [OW02] have commonalities and differences. Both studies support
the hypothesis that the concentration of defects on a small part of files persists across
several releases of software. In contrast to our results, Ostrand and Weyuker report that
the concentration even increases, i.e. the defects concentrate on a lower percentage of
files as system matures. For OSPs, the concentration varies slightly from release to
release. This observation can have several reasons: First, OSPs do not mature, as this is
the case for commercial software; they rather settle down to a relative stable level.
Another reason could be that the authors in [OW02] consider thirteen releases of a
software system. The number of releases considered in this study is lower.

Similarly to the results reported in literature, we did not find evidence for our initial
hypotheses concerning the distribution of defects in code (Hypothesis 3). Defects do not

concentrate on a small part of the code. In some projects, this has been true for a small
part of the analysed releases. Thus, we analysed whether in this cases the concentration
persist across several releases (Hypothesis 4). However, this was not the case. A high
concentration of defects on a small part of a system’s code is an exception. In addition,
there is no evidence for the converse hypothesis: If a small number of files account for
the majority of the defects, it is because these files contain the majority of the code.

The results of this study can be used by practitioners and researchers as well. Knowing
about the existence of a Pareto distribution of defects on files, testers can focus their
testing activities on these very files only, concentrating their limited resources on the
“vital few” instead of the “trivial many”. From the research point of view, this study
increases the empirical body of knowledge. Replication of studies is advocated in order
to gain confidence in the results instead of relying on single studies with specific context
[Pf05].

References

[En79] Endres, A.: An analysis of errors and their causes in system programs. SIGPLAN Not.
10, 6 (Jun. 1975), 1975, 327-336.

[Re05] Reh, J.F.: Pareto's Principle - The 80-20 Rule, How the 80/20 rule can help you be more
effective, about.com Management,
http://management.about.com/cs/generalmanagement/a/Pareto081202_2.htm, last
visited, October 2008.

[JG88] Juran, J.M.; Gryna, Jr.F.M.: Quality Control Handbook (4th edition), McGraw Hill,
1988.

[AR07] Andersson, C.; Runeson, P.: 2007. A Replicated Quantitative Analysis of Fault
Distributions in Complex Software Systems. IEEE Trans. Softw. Eng. 33, 5, May. 2007.

[OA96] Ohlsson, N.; Alberg, H.: Predicting Fault-Prone Software Modules in Telephone
Switches. IEEE Trans. Softw. Eng. 22, 12 (Dec. 1996), 886-894, 1996.

[KK96] Kaaniche, M.; Kanoun, K.: Reliability of a commercial telecommunications system. In
Proceedings of the the Seventh international Symposium on Software Reliability
Engineering (ISSRE '96), IEEE Computer Society, Washington, DC, 207, 1996.

[FO00] Fenton, N. E.; Ohlsson, N.: Quantitative Analysis of Faults and Failures in a Complex
Software System. IEEE Trans. Softw. Eng. 26, 8 (Aug. 2000), 2000, 797-814.

[IS07] Standard glossary of terms used in Software Testing Version 2.0 (December, 2nd 2007),
Produced by the ‘Glossary Working Party’ International Software Testing Qualifications
Board, http://www.istqb.org/downloads/glossary-current.pdf

[Ha08] Hatton, L.: The role of empiricism in improving the reliability of future software,
Keynote Talk at TAIC PART 2008, http://www.leshatton.org/Documents/TAIC2008-29-
08-2008.pdf, last visited October 2008.

[OW02] Ostrand, T. J.; Weyuker, E. J.: The distribution of faults in a large industrial software
system. SIGSOFT Softw. Eng. Notes 27, 4 (Jul. 2002), 2002, 55-64.

[Pf05] Pfleeger, S. L.: Soup or Art? The Role of Evidential Force in Empirical Software
Engineering. IEEE Softw. 22, 1 (Jan. 2005), 2005, 66-73.

[Wo00] Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A.:
Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers, 2000.

[MK92] Munson, J. C.; Khoshgoftaar, T. M.: The Detection of Fault-Prone Programs.
IEEE Trans. Softw. Eng. 18, 5 (May. 1992), 1992, 423-433.

