

Copyright © [2010] IEEE.
Reprinted from Proceedings of the 1st International Workshop on
Requirements at Runtime (RRT'10),pp. 25-30

This material is posted here with permission of the IEEE. Internal or
personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org
By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

Using Requirements Traceability Links At Runtime – A Position Paper

Alexander Delater, Barbara Paech
University of Heidelberg, Institute of Computer Science
Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

{delater, paech}@informatik.uni-heidelberg.de

Abstract: During software development a large amount of varied
information is created. It comprises the requirements specification
and depending artifacts such as design, code or test cases, as well
as supporting information such as traceability links. This
information is intended to be used during development time. The
research in requirements at runtime has so far focused on using the
requirements specification at runtime. This paper explores how to
use the existing traceability links between requirements and other
artifacts at runtime.

Keywords: requirements, traceability, development time, runtime

I. INTRODUCTION
Traceability information is created throughout the entire
software engineering process using a plethora of different
methods [7]. This information is used to support such
activities as impact analysis for required changes or to
support the developers by providing the related artifacts to a
given artifact, e.g. a requirement and its realization in the
code. More examples for specific questions that can be
answered by traceability links can be found in [8]. However,
the traceability information is usually only used during the
development time of the system.

In this paper we present our thoughts on how
requirements traceability information can also be used during
the runtime of a dynamically adaptive system (DAS). In [2]
Berry et. al. have defined a DAS as “a computer-based
system (CBS) that is capable of recognizing that the
environment with which it shares an interface has changed
and that is capable of changing its behavior to adapt to the
changing conditions”.

The paper is structured as follows: in Section II we
define the basic terminology and assumptions used
throughout the paper. Section III gives an overview of
traceability links, their benefits and their use during
development time and runtime. This is detailed in Section
IV. Section V discusses the results and Section VI provides a
conclusion.

II. BASIC TERMINOLOGY AND ASSUMPTIONS
In this section the basic terminology and assumptions used in
the paper are defined. First, a short definition of
requirements traceability is provided. Second, we define the
terms “development time” and “runtime” of a system using
the term release. Third, we determine how traceability
information fits into requirements engineering for DAS.

A. Requirements Traceability
In the field of requirements engineering (RE), traceability is
usually defined as the ability to follow the traces to and from
the requirements. Gotel & Finkelstein have given a well-
accepted definition [5]:

“Requirements Traceability refers to the ability to
describe and follow the life of a requirement, in both
a forwards and backwards direction (i.e., from its
origins, through its development and specification, to
its subsequent deployment and use, and through all
periods of on-going refinement and iteration in any
of these phases).”

In this paper we assume that the requirements are structured
and stored with the help of a requirements management tool
such as IBM Rational DOORS. Requirements can either be
represented as formalized requirements or natural language
requirements. Furthermore, we assume that there exist
traceability links between the requirements and further
artifacts of the development process, in particular design,
code, test cases, rationale description for important
development decisions and descriptions of development
tasks. Note that we do not consider links between
requirements on different levels (e.g. between early and late
requirements or between requirements of different
granularity). We are not interested in how the artifacts, e.g.
requirements, code, test cases etc., as well as the traceability
links to depending artifacts were created during the
development time. It is assumed that this information is
available and ready to use.

B. Development Time and Runtime
Typically, the terms “development time” and “runtime” are
defined referencing the complete software system. However,
a software system is subject of constant change and is
adapted and improved throughout its lifetime. Thus, it is
difficult to distinguish development time and runtime clearly.
In contrast, a release of a software system is a finalized
version of the system at a given point of time. Therefore, the
runtime of the release is starting when the development time
of the release is completed. This leads to the following
definitions:

978-1-4244-8799-8/10/$26.00 ©2010 IEEE 25

Development Time: During development time, a new
release of a system is developed based on a previous release
and new requirements. The new requirements might be from
the context of use (stakeholders) or induced through new
technologies. Furthermore, they might be changes to existing
requirements or additions to the existing requirements. A
large set of artifacts (requirements, design, code, test cases
etc.) is modified and linked to one another. At the end of the
development time, a final release of the software is deployed
and the set of inter-linked artifacts is completed and refers to
the final state of the release.

Runtime: The deployed release of the system is used inside
the customer organization. The release supports the users by
accomplishing their tasks. The release provides a valuable
contribution to the business and is an important asset for the
day-to-day business of the customer.

Thus, for a DAS we distinguish

• the development time of the release of the DAS in
which the development team creates development
artifacts including requirements and traceability
links. The code of the release contains adaptation
mechanisms and mechanisms to determine when and
how to adapt.

• the runtime of the release of the DAS. During the
runtime the release can adapt its behavior. That
means that due to changes in the environment the
code is adapted using the adaptation mechanisms.
This creates a variant of the release. Clearly, this
adaptation also impacts other artifacts and their
traceability. Requirements need to be adapted to
reflect the current state of the environment and the
active variant. Design and test cases need to be
adapted to be consistent with the adapted code.
Furthermore, test cases need to be performed to
make sure that the adapted code satisfies the
requirements. Thus, activities performed by the
development team at development time are
necessary and helpful during runtime. We assume
that the development team only becomes active
during development time for the next release. So
these adaptations can only be performed by the
release itself or by the customer or the users.

C. Requirements Engineering for Dynamically Adaptive
Systems

In [2], Berry et. al. have defined four levels of RE for DAS.
On the first level the requirements for all variants of the
current release are specified. This is the core of requirements
engineering activities at development time. So far many
approaches have focused on this part by providing new
languages to reflect e.g. incomplete information [4].

On the second level the release recognizes that adaptation
is necessary and adapts its code accordingly. The release
determines (based on the mechanisms implemented during
development time) the new functionality to be offered in the
active variant. This is part of the runtime of the release. In

our context, we assume that this level includes all activities
mentioned above to adapt other development artifacts and to
perform quality assurance for the adapted code. While these
adaptations would typically not considered as RE, Berry et
al. argue that this is RE performed by the systems, as it
includes understanding the current environments and its
requirements.

On the third level RE is concerned with the adaptation
mechanisms, that means it identifies suitable mechanisms.
Again this is part of the development time of the release.

And finally on level four, RE is concerned with
discovering adaptation mechanisms in general. This is
independent of the particular release and not considered here.

Traceability links reflecting all variants are part of the
first level. In the following we discuss how these links can be
useful for RE on the second level. In [12] Welsh and Sawyer
also discuss requirements tracing for DAS. However, they
concentrate on creating requirements traces for DAS, while
we focus on how they can be used at runtime.

III. REQUIREMENTS TRACEABILITY ASPECTS
In Pohl [9], several aspects related to requirements
traceability are summarized (see column “Aspect” in
TABLE I). These aspects represent different benefits of the
availability of traceability links (see also [10] and [11]). We
use the aspects presented by Pohl as a basis to identify
typical uses of traceability links.

TABLE I. ASPECTS AND LINKS

Link
Aspect

Req.
–

Req.

Req.
–

Design

Req.
–

Code

Req.
–

Test

Req.
–

Rat.

Req.
–

Task
During Development Time & Runtime

Acceptance D / R D / R
Change Mgmt D / R D / R D / R D / R D / R
Quality Mgmt D / R D

Re-Use D D D / R D D
Allocation D / R D

Only During Development Time
Gold Plating D D

Reengineering D D D D
Risk Mgmt D D

Project Progr. D D D D
Process Mgmt D

D = usage during development time; R = usage during runtime

As shown in TABLE I, we only consider links from
requirements to other artifacts. The examined links are:
Requirements (Req.) – Req., Req. – Design, Req. – Code,
Req. – Test, Req. – Rationale (Rat.), Req. – Task. A task is
an activity performed by a member of the development team.
Furthermore, the table summarizes whether these links can
be used during development time or during the runtime of
the DAS. This judgment is based on our own knowledge of
and experience in RE. Details are explained in the next
section.

978-1-4244-8799-8/10/$26.00 ©2010 IEEE 26

TABLE II summarizes the aspects from TABLE I that
benefit from traceability links during runtime and shows how
their links are used. It describes which links are traversed in
which direction to answer which question. Again the details
are explained in the next section.

TABLE II. RUNTIME TRACEABILITY DETAILS

Usage
Aspect

Starting
info.

Searched
info.

Question/
Decision

Usage at
Runtime

Acceptance Adapted
C

C ! R
R ! T

Identify T
needed to

test adapted
C

DAS

 Adapted
C C ! R Identify side

effects of C DAS

Change Mgmt
Adapted

C

C ! R
R ! T
R ! D

R ! Rat.

Adapt
artifacts

related to C
DAS

Quality Mgmt Failed C C ! R
Identify

criticality of
failure

DAS /
user

Re-Use R R ! C Identify
reusable C DAS

Allocation R R ! C

Identify
number of
executions

of C (related
to certain R)

DAS

R = req., D = design, C = code, T = test case, Rat = rationale

IV. USAGE OF REQUIREMENTS TRACEABILITY LINKS
DURING DEVELOPMENT TIME AND RUNTIME

The purpose of this section is to identify the links that can be
used at runtime. We present the aspects from TABLE I and
TABLE II in detail. They are all examined in the same
structural way: First, a detailed description of the aspect is
provided. Second, we explain which links between which
artifacts are needed. Third, we look at the usage of these
links during the development time. Fourth, we discuss
whether these links can be used during the runtime of the
release.

A. Acceptance
1) Description

Traceability supports the evidence that a requirement is
realized as specified (correct and complete) in the developed
release. This evidence increases the acceptance of the
release.

2) Links needed
For acceptance the links between requirements and code,

as well as between requirements and test cases are most
important. The link to the code proves that the requirement
has been considered in the implementation, while the link to
the test cases proves that the quality of the requirement has
been established appropriately.

3) Activities during development time
The requirements engineer or the project manager uses

the links between the requirements and the code to ensure
that all requirements were implemented in the source code.
In particular, s/he can verify that all non-functional
requirements are addressed by one or more parts of the
implementation [8].

The customer or the project manager uses the links
between the requirements and the test cases to ensure that all
requirements are tested.

4) Activities during runtime
As mentioned in Section II, similarly to the verification

at development time, it is important to perform verification at
runtime. For instance, if a piece of code is adapted at
runtime, then the trace to the affected requirements and from
them to the corresponding test cases helps to identify the test
cases which need to be executed at runtime. Thus, the DAS
can identify the test cases and execute them. Of course, this
requires also meta-information of test cases as introduced
e.g. through built-in-test [3].

B. Change Management
1) Description

If an artifact changes, the traceability information makes
it possible to identify linked artifacts that are affected by this
change.

2) Links needed
To support the change management, it is necessary to

introduce traceability links between the requirements and all
depending artifacts that means requirements, design, code,
rationale and test cases.

3) Activities during development time
A member of the development team performs an impact

analysis that means s/he identifies the artifacts that are
affected by the change of the requirement. Furthermore, s/he
is able to use this information to predict the cost of the
change. Afterwards s/he applies the necessary changes.

4) Activities during runtime
The execution of changes corresponds to the code

adaptations at runtime. While the adaptations related directly
to a requirements change must be built-in to be performed at
runtime (and thus do not need the link from requirements to
code), the links help to identify side effects of performed
changes. One identifies further requirements (besides the one
triggering the change) linked to the changed parts of the
code. Thus, e.g. such links trigger further code adaptations.
Furthermore, as discussed in Section II, we stipulate that
together with the code adaptation also the related artifacts
need to be updated. So e.g. the DAS highlights in the artifact
repository the artifacts corresponding to the currently active
variant.

C. Quality Management
1) Description

The traceability information facilitates the identification
of the causes and effects of bugs, the determination of the

978-1-4244-8799-8/10/$26.00 ©2010 IEEE 27

affected parts of the release and the prognosis of the effort to
fix the bug.

2) Links needed
To support quality management, it is necessary to

introduce links between the requirements and code as well as
between the requirements and test cases.

3) Activities during development time
From a (failed) test case the developer navigates to the

related requirement; from this requirement s/he navigates to
the affected parts of the code. Thus, the links help to locate
the bug. Furthermore, the link to the requirements helps to
identify the severity of the failure. If the affected
requirements are not critical, fixing the bug can be
postponed.

4) Activities during runtime
During runtime built-in test cases are run and may fail.

The reaction to the failure must already be built-in to the
code, too. Thus, the link from test case to code is not needed
at runtime. Similar, the link to the rationale is not required at
runtime as well. However, a use of the link from code to
requirements seems possible: the DAS notices a failure of
the release during runtime, for example a service is not
available. Then it knows the affected part of the code. Thus,
it can also use the link to the requirements to determine
whether these requirements are critical and use this
information to decide how to react to the failure. E.g. in case
of a critical failure, it can shut down. Similarly, a user could
use this link to decide whether a failure is critical.

D. Re-Use
1) Description

Traceability supports the re-use of development artifacts.
By performing a comparison between the old and new
requirements, artifacts can be identified which can be re-used
in the new release.

2) Links needed
To support the re-use of development artifacts,

traceability links between all depending artifacts are
required, that means between requirements, design, code, test
cases and rationale.

3) Activities during development time
A developer has to implement a requirement. S/he

searches for a similar requirement already implemented. By
using the link between the requirements and design or code,
s/he is able to see how the similar requirement has been
designed and realized in the code of a previous release. The
linked rationale supports the developer during the
implementation by providing valuable knowledge and the
linked test cases might be adapted for testing the new
requirement.

4) Activities during runtime
Identifying an existing piece of code for a given

requirement is one of the standard mechanisms used in
service-based DAS. Given a specification of a service (e.g. in

WSDL1) the DAS identifies a corresponding implementation
at runtime (e.g. via UDDI2). All other links do not seem
useful for the re-use during runtime.

E. Allocation
1) Description

Traceability information is useful for mapping the
development effort to the individual requirements. By tracing
which team member has performed a task related to a
requirement and how much time s/he required for the task, it
is possible to map the individual development costs to a
single requirement. By performing this comparison, the
allocation of the resources of the product is improved. It is
also interesting to trace the amount of code related to a
requirement.

2) Links needed
Traceability links between the requirements and the tasks

in the project as well as to the code are required to support
the allocation.

3) Activities during development time
By using the link between the requirements and the tasks

in the project, the project manager or customer calculates the
exact amount of required time and resources for the
realization of each requirement. For example, the customer
or project manager identifies which requirement was the
most expensive one to implement based on the tasks effort.
Moreover, by identifying a very expensive, yet unfinished
requirement, the customer could stop the implementation in
order to save resources. Similarly, the customer or project
manager can identify how much code is related to a
requirement.

4) Activities during runtime
Understanding development cost is not necessary during

runtime. However, a related question interesting for the
customer is the following: how much code related to a
requirement is exercised how often at runtime. Thus, the
DAS identifies for a given requirement the related code parts
and monitors their execution.

The following aspects F-J describe benefits from traceability
links that are only useful during development time.

F. Gold Plating
1) Description

Traceability supports the identification of code that was
not required in the requirements specification. Therefore, it
may have no justification to be part of the release. The
development of such code is called “gold plating”.

2) Links needed
To ensure that only required features were implemented

in the release, it is necessary to link requirements with the
design and with the code.

1 http://www.w3.org/TR/wsdl

2 http://www.uddi.org/pubs/uddi_v3.htm

978-1-4244-8799-8/10/$26.00 ©2010 IEEE 28

3) Activities during development time
All members of the development team as well as the

customer use the links from requirements to design or from
requirements to the code to check whether all parts of the
implementation are justified by a requirement.

4) Activities during runtime
As adaptations at runtime are only triggered by

environmental changes, a check at runtime, whether these
adaptations are justified by the requirements, is not
necessary.

G. Re-engineering
1) Description

Traceability information supports the re-engineering of
legacy systems. It is possible to understand which code of
the legacy system realizes which requirements.

2) Links needed
To support the re-engineering, it is necessary to introduce

links between the requirements and the design, code and test
cases. Furthermore, to better understand decisions it is
necessary to link requirements with rationale.

3) Activities during development time
A new team member, who was not participating in the

development of a previous release of the software system,
uses the linked rationale to better understand the major
design decisions of the previous release. For example, a
rationale documents a decision made for the usage of a
specific technology. Thus, the team member better
understands how the requirement has been realized in the
design and code of the release. Furthermore, a team member
uses the link between the requirements and code or test cases
to understand the context of certain code fragments or test
cases.

4) Activities during runtime
Understanding the code is not necessary at runtime for

the DAS itself or the customer or the users.

H. Risk Management
1) Description

Traceability between requirements and other artifacts
(e.g. code) supports the risk management. Artifacts
potentially affected by a risk can be identified more rapidly
and reliably by the available traceability information.

2) Links needed
In order to support the risk management, it is necessary

to introduce links between the requirements themselves as
well as between the requirements and the code.

3) Activities during development time
This aspect is a special form of change management

where the impact analysis is used to identify effects of a risk.
The requirements engineer or project manager identifies
requirements that are maybe affected by a risk early in the
development time. If a risk appears, s/he is able to estimate
the effort to change the requirement as well as the linked
artifacts in the design and code.

4) Activities during runtime
For risk management the changes are only analyzed, but not
performed. Thus, risk management is not useful at runtime.
Clearly, the adaptation after the risk has appeared is
necessary at runtime. This is captured under change
management.

I. Project Progress
1) Description

Traceability information supports the tracking of the
project progress and the current state of the project. By
performing an analysis of the links between the artifacts, one
is able to identify which and how many requirements were
already included in the code or covered by test cases.

2) Links needed
To support the project progress measurement, it is

necessary to introduce links between the requirements and
design, code and test cases. By introducing links between the
project model and system model, a development task can be
traced to the artifacts it is related to [6].

3) Activities during development time
This aspect is related to acceptance. A project manager

uses the links between the requirements and design as well as
the links between the requirements and code to identify how
much requirements were already realized and implemented.
Using the links between requirements and test cases s/he can
also track which requirements are already tested. By using
the links between requirements and tasks, s/he can track the
importance of ongoing tasks.

4) Activities during runtime
Understanding project progress or status is not needed at

runtime.

J. Process Management
1) Description

Traceability information supports process management,
because it helps to identify problems in the development
process and their reasons. The planning and establishment of
measurements of improvement can be targeted directly at the
causes of the problems.

2) Links needed
Traceability links between the requirements and the tasks

are necessary to support process management.
3) Activities during development time

If a developer has problems while implementing a certain
requirement, this affects the overall process to implement the
release. The project manager is able to identify the tasks that
were not completed in time and find out the reasons for the
problems.

4) Activities during runtime
Process management is not useful during runtime.

978-1-4244-8799-8/10/$26.00 ©2010 IEEE 29

V. DISCUSSION
In this section we summarize the insights from the tables
above about the usage of traceability links at runtime.

As one can see from TABLE I traceability links between
requirements and code are particularly useful at runtime. But
all the other links between requirements and system artifacts
(in contrast to the tasks which are project artifacts) are also
useful, especially during change management. After an
adaptation the DAS can use the links to highlight
development artifacts relevant to the current variant of the
release. Thus, the DAS monitors the knowledge important
for the current variant. Similarly, (as can be seen in
TABLE II) for the allocation usage at runtime, the DAS uses
the links for monitoring. The other runtime uses are more
directly related to the execution of the DAS: the re-use usage
is a key mechanism needed in service-based systems. During
the usage for acceptance, change management (side effects)
and quality management, the link from code to requirements
is used to provide more knowledge to the DAS which
supports the execution of the DAS: the test cases for runtime
verification and the side effects and criticality information to
support the adaptation.

In our view, implementing the monitoring and the
execution support is straightforward. However, one could
also think of more elaborate change management usages,
where the artifacts are not only highlighted, but also adapt
themselves. Furthermore, we have so far only explored
whether development time usages could be transferred to
runtime. It might be that totally new usages of traceability
links at runtime can be identified, when we have better
understood the implications and implementations of DAS.

We have argued above that only part of the traceability
information is helpful during runtime. However, we think
that this information is particularly useful, as it does not
require any further preparation of the requirements. While
other approaches for requirements at runtime [1] require an
extended or formalized representation of the requirements,
the usage described above only uses the link as the formal
element. This information is available and ready to use and
does not require a specific requirements representation.

VI. CONCLUSION
In this paper we have discussed how specific requirements
traceability information can be used during runtime. Based
on traceability aspects representing benefits at development
time we have identified possible uses for some links at
runtime. These uses do not require a particular requirements
representation (formalized or natural language) besides the
traceability links. In our view this broadens the
understanding of requirements at runtime as well as our

understanding of traceability. As already argued in [3] for the
case of built-in test, the support of runtime activities supports
also the performance of these activities at development time.
In that case, integration test was supported through insights
from built-in test. In the case of traceability links, we believe
that an approach for using the links at runtime will also
support the automated performance of these activities at
development time.

REFERENCES
[1] Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier, E.:

Requirements Reflection: Requirements as Runtime Entities. In
ICSE ’10: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, New York, NY, USA, pp. 199–
202 (2010)

[2] Berry, D. M., Cheng, B. H. C., Zhang, J.: The Four Levels of
Requirements Engineering for and in Dynamic Adaptive Systems. In:
REFSQ ’05: Proceedings of the 11th International Workshop on
Requirements Engineering Foundation for Software Quality (2005)

[3] Brenner, D., Atkinson, C., Malaka, R., Merdes, M., Paech, B., and
Suliman, D.: Reducing verification effort in component-based
software engineering through built-in testing. Information Systems
Frontiers, Vol. 9, Issue 2-3, pp. 151–162 (2007)

[4] Cheng, B. H. C., Giese, H., Inverardi, P., Magee, J., de Lemos, R.:
Software Engineering for Self-Adaptive Systems: A Research Road
Map. In Dagstuhl Seminar Proceedings (Schloss Dagstuhl, Germany -
Leibniz - Zentrum fuer Informatik, Germany) (2008)
http://www.dagstuhl.de/08031/

[5] Gotel, O., Finkelstein, A.: An Analysis of the Requirements
Traceability Problem. In: Proceedings of the International Conference
on Requirements Engineering, Colorado Springs, CO, USA, pp. 94–
101 (1994)

[6] Helming, J., Koegel, M., Naughton, H.: Towards Traceability from
Project Management to System Models. In TEFSE ’09: Proceedings
of the 2009 ICSE Workshop on Traceability in Emerging Forms of
Software Engineering, Washington, DC, USA, pp. 11–15 (2009)

[7] von Knethen, A., Paech, B.: A Survey on Tracing Approaches in
Practice and Research. IESE (2002)

[8] Maletic, J. I., Collard, M. L.: TQL: A Query Language to Support
Traceability. In TEFSE ’09: Proceedings of the 2009 ICSE Workshop
on Traceability in Emerging Forms of Software Engineering,
Washington, DC, USA, pp. 16–20 (2009)

[9] Pohl, K.: Requirements Engineering, dpunkt.verlag (2008)
[10] Ramesh, B.: Factors Influencing Requirements Rraceability Practice.

Communications of the ACM, Vol. 41, No. 12, pp. 37–44 (1998)
[11] Spanoudakis, G., Zisman, A.: Software Traceability: A Roadmap. In:

Handbook of Software Engineering and Knowledge Engineering,
World Scientific Publishing, pp. 395–428 (2004)

[12] Welsh, K., Sawyer, P.: Requirements Tracing to Support Change in
Dynamically Adaptive Systems. In REFSQ ’09: Proceedings of the
15th International Working Conference on Requirements
Engineering: Foundation for Software Quality, pp. 59–73, Springer,
Heidelberg (2009)

978-1-4244-8799-8/10/$26.00 ©2010 IEEE 30

	IEEE_2013_Copyright
	2010_delater_using

