
Improved Representation of Traceability Links in Requirements Engineering
Knowledge using Sunburst and Netmap Visualizations

Thorsten Merten, Daniela Jüppner

Department of Computer Science
Bonn-Rhine-Sieg University of Applied Sciences

Sankt Augustin, Germany
thorsten.merten@h-brs.de

daniela.jueppner@smail.inf.h-brs.de

Alexander Delater

Institute of Computer Science
University of Heidelberg

Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
delater@informatik.uni-heidelberg.de

Abstract—The representation of traceability links in require-
ments knowledge is vital to improve the general understanding
of requirements as well as the relevance and consequences of
relations between requirements artifacts and other artifacts
in software engineering. Various visualization techniques have
been developed to support the representation of traceabil-
ity information, e.g. traceability matrices, graphs and tree
structures. However, these techniques do not scale well on
large amounts of artifacts and often do not provide additional
functionality to present supplementary data. In this paper,
we use Sunburst and Netmap visualizations as alternative
visualization techniques. These techniques perform well even on
large amounts of artifacts and traceability links. Moreover, they
provide the ability to present derivative data. An implemen-
tation of the visualizations was developed in conjunction with
a requirements plugin for the Redmine project management
platform. In this paper, the applicability of Sunburst and
Netmap visualizations for requirements engineering knowledge
is illustrated by applying it to an example project and the
results are compared to traditional visualization techniques.

Keywords-component visualization, requirements, artifacts,
knowledge-management

I. INTRODUCTION

Requirements knowledge is usually captured in require-

ments artifacts, which are defined as “documented require-

ments” [1]. “Documented requirements” can be represented

in various forms e.g. goals, scenarios, user profiles, use-

cases etc. They are organized in requirements documents

or requirements specifications. In turn, these documents are

organized in sections or chapters.

However, additional traceability links between require-

ments artifacts can be added, especially when knowledge

management (KM) tools are used. The knowledge about

requirements artifacts and their traceability links to other

artifacts is important for various tasks performed throughout

the design and development of a software system [2].

Therefore, these tools incorporate various visualizations of

traceability links between requirements artifacts to simplify

understanding. Traditional approaches include traceability

matrices as well as more advanced techniques like trees or

graphs.

However, traditional approaches have various disadvan-

tages. For example, most traceability links between require-

ments artifacts cannot be represented in a tree or traceability

matrices can grow quickly to an enormous size, as N artifacts

result in a NxN matrix.

In this paper, Sunburst and Netmap visualization tech-

niques will be adopted for representing traceability links be-

tween requirements knowledge. Both visualizations provide

an overview of the primary data’s locations in the knowledge

base and display traceability links between requirements

artifacts efficiently. Moreover, they perform well on large

amounts of nodes [3]. For evaluation, the visualization

techniques are applied on an example project, specified

using the RE Plugin. The results are compared to other

visualization techniques.

The remainder of this paper is structured as follows: Sec-

tion 2 describes the motivation behind using Sunburst and

Netmap and discusses related work on existing visualization

techniques. Our approach is presented in detail in section 3

and is applied to an example in section 4. The results are

discussed in section 5 and section 6 provides conclusion and

highlights future work.

II. MOTIVATION

Visualizing traceability links will directly support three

main activities related to these links: recovering, browsing

and maintenance of traceability links [4]. Browsing, in turn,

supports the understanding of requirements knowledge. Gen-

erally, traceability links substantiate the meaning of artifacts

as they are shown in their specific context. In the following,

we will introduce different visualization techniques tradi-

tionally used for showing artifacts and their dependencies.

A. Lists

Lists can represent large amounts of similarly structured

knowledge in a linear way. However, they are limited to a

single dimension for arranging the information.

17978-1-4577-0938-8/11/$26.00 ©2011 IEEE

B. Matrices

A matrix is a two-dimensional grid that represents links

between knowledge. One matrix can display traceability

links between two sets of artifacts, such as requirements

and design elements [5]. Even for non-technical users,

traceability matrices are easy to understand and are used in

simple scenarios, such as recording or checking the existence

of single links between artifacts.

However, for real-world projects, traceability matrices can

become very large and unreadable, especially if multiple

layers of traceability are to be tracked [6]. Matrices can grow

quickly and cannot display additional attributes. Often, more

than one matrix is needed [1] to represent different types of

connections within requirements artifacts.

C. Trees

Trees are the traditional way of presenting an overview

of the requirements knowledge (see fig. 1). Established tools

as IBMs RequisitePro or DOORS use these representation

forms. In most tools the tree is embedded in the design

pattern ”Two Panel Selector” described by Tidwell [7] to

support efficient navigation.

�
Figure 1. Requirement artifacts represented in a tree structure

Although being intuitive, trees lack the ability to present

additional traceability links between requirement artifacts.

Examples for these traceability links are rationale decisions,

conflicts, decompositions for refinement, implementations

and so on. Any trace beside the parent/child relation would

extend the tree data structure towards a graph.

D. Traditional Graphs

If artifacts are interpreted as nodes and traceability links

as edges, they can be visualized in a graph-based notation. In

fact, a traceability matrix can be interpreted as the adjacency

matrix of such a graph. Traceability graphs can provide an

intuitive representation of relations between artifacts [8].

Despite all of these advantages, graphs with standard

layout are often not as intuitive to ordinary users as matrices

or simple references, as they can become huge and thus hard

to understand [9]. Additionally, it is known that people tend

to over interpret graphs. For example, nodes shown at a

higher position in the graph tend to be recognized as more

important [3].

As stated by Winkler et al., “scalable visualization tech-

niques can help to manage the huge amounts of traces

occurring in real-world projects” [5]. However, as described

above, simplicity is the main advantage of lists, sections,

matrices, graphs and trees, but they are not well suited

for representing larger amounts of artifacts with multiple

traceability links or do not scale well [4]. Thus, new vi-

sualization techniques are required to give an overview of

requirements knowledge and its relations and to support for

further analysis.

III. APPROACH

For a better understanding of our approach, the data

model of the requirements repository will be explained first.

Second, Sunburst and Netmap visualizations are presented

and applied to an example requirements repository.

A. Data Model

The data model consists of requirements artifacts repre-

senting the primary knowledge and traceability links con-

necting artifacts. Each artifact has common properties like

name, description or author. Requirements artifacts like

goals, scenarios, use-cases, roles and so on are distinguished

by their type property. The type is mapped to a color for

visualization.

+ name
+ type

Artifact
+ directed
+ type
+ annotation

Relation

0..*2

+ source
+ sink

Figure 2. Data Model in UML2 Notation (simplified)

As for artifact types, color coded traceability link types are

used to relate artifacts. A traceability link may be directed

or undirected. As an example, a refinement from artifact

A to artifact B should be modeled as a directed link. A

conflict between artifact C and D might be undirected. A

traceability link can be tagged to make it more expressive.

For example, the refinement between A and B could be

tagged as ”solution” to make clear that B is a concrete

implementation for A. Fig. 2 gives an overview of the data

model.

New artifacts are inserted into the requirements specifi-

cation through the navigation tree as shown in fig. 1. The

software transparently creates traceability links of the type

parent/child. Fig. 3 displays some of these traceability link

types: parent/child (blue, directed), dependency (orange) and

conflict (red).

We use two visualization techniques to display the re-

quirements artifacts and their traceability links in this paper.

Firstly, a tree structure as in fig. 1 gets transformed in

18

radial layout (Sunburst, see fig. 4). Secondly, a way of effi-

ciently displaying and filtering traceability links is presented

(Netmap, see fig. 3). Different colors per artifact type to

facilitate distinction and recall of the types.

B. Sunburst Visualization

The Sunburst Visualization [10] is a graph, which nodes

are arranged in a radial layout. Nodes are drawn on adjacent

rings representing a tree structure. Each child of a node

with depth n is represented in the ring n + 1 on the same

radian space as its parent(s). The arrangement makes the

graph more compact and provides a better user orientation

as discussed below.

It can be seen in fig. 1 that a traditionally rendered tree, as

used by most software products, grows rapidly in the vertical

direction if many branches get expanded. It is comlicated to

identify nodes on the same level of the tree. Furthermore,

only a small part of the tree fits on a computer screen. By

using Sunburst the tree gets transformed in a radial layout.

The tree grows uniformly in all directions as shown in fig.

4 and 5. Nodes are displayed on adjacent rings representing

the trees structure. The center represents the project (the

root of the tree), whereas each ring is a structuring level of

requirements artifacts (level).

The usefulness and understandability of this visualization

has already been proven for the navigation in file system

structures [10]. A major problem stated in [10] is that nodes

on the outer circles tend to be small and may even become

unreadable. The problem occurs for branches with many

child nodes. However, the problem could be mitigated using

a dynamic aspect of the infovis toolkit [11]: The toolkit

allows the folding and unfolding of nodes, such that the user

can hide branches, which are not of interest for the current

research. Folded branches free space for other nodes, which

get drawn bigger (see fig. 4 and 5). In our implementation,

the visualization initially presents the whole specification.

Afterwards users can focus on the information they are

searching for. If a certain branch in the tree should be further

researched regarding traceability links between requirements

knowledge, a Netmap helps to gain more insights. This is

presented in the next section.

C. Requirements knowledge in a Netmap

In difference to Sunburst, where nodes are drawn on

adjacent rings representing a tree structure, the nodes in a

Netmap [12] are segments of exactly one ring. Each node is

represented equally to prevent misinterpretation of the nodes.

In the inner circle traceability links are drawn. Like the

requirements artifacts, traceability link types are colored dif-

ferently. Furthermore, directed traceability links are shown

as arrows and undirected ones as hyper lines (curved lines)

without an arrow.

Obviously, drawing all nodes on only one ring narrows

the radial space for each node. Artifacts as well as the

traceability link types need to be filtered by their type

attribute to make the search for traceability links between

requirements knowledge more efficient.

Figure 3. Netmap visualization of connected requirement knowledge

D. Filters and additional information

Our implementation enables to filter for artifact types as

well as traceability link types. For example in fig. 3, seven

node types are displayed whereas fig. 6 displays use-cases,

user profiles and goals, only. From a users point of view,

filters can be triggered using select boxes. Furthermore, sub-

trees of the specification can be visulized, which reduced the

number of nodes significantly and helps focussing on certain

specification parts.

Both visualizations are interactive. They display addi-

tional data about the requirements artifacts, like the full

name or the description, when hovered with the mouse

pointer as shown in fig. 6. This enables the user to get

additional information without leaving the visualization.

When a node is clicked links to the artifacts editor as

well as all related arefacts is displayed. Therefore, the

visualization can be used for content navigation as well.

IV. EXAMPLE

In this section both visualization types are applied to

an example requirements specification. The specification is

structured as shown in fig. 1. It defines a vision statement for

the project. The next section consists of project goals. There-

after user profiles get identified. The end of the specification

consists of use-cases for these roles, which are themselves

structured in work areas. The visualization will be used to

answer the following questions regarding the specification:

1) To which extend are use-cases defined and where do

they reside in the specification?

2) Is each use-case complemented with at least one user

profile?

19

3) Have user profiles been identified which are not ref-

erenced anywhere in the specification?

Fig. 4 and 5 show how both visualization types help to

achieve this. In fig. 4, Sunburst is used to show an overview

of the specification. Due to the artifact type’s color-coding,

use-cases can easily be spotted in the upper region below the

work areas. In fig. 5, we combined two steps. All artifacts,

which are not of type work area, have been folded to free

space for the use-cases. Then, the filter is broadened to show

artifacts of type “use-case step”. The “size” of use-cases can

be derived through the number of its steps. Most use-cases

are of roughly the same size, consisting of 3-7 steps. At the

top-left of fig. 5 use-case ”Edit RE Artifacts” consists of 10

steps giving it a major radial distance. Use-case ”Methodical

Guidance” at the top-right does not consist of any steps. It

might be recommendable to check whether the large use-

case is still understandable and if further specification is

needed for the small use-case. Together, the above gives a

comprehensive answer to question 1.

To answer questions 2 and 3, fig. 6 switches to the Netmap

view. The figure uses the same data as fig. 3 whereas this

view is filtered to display use-cases, goals and user profiles,

only. Yellow lines show dependencies and red lines denote

conflicts.

Concerning question 2, the Netmap view shows that each

use-case besides ”Issue Management” is dependent to at

least one user. Question 3 can also be answered through

the Netmap. The user profile ”Administrator” at the right is

not connected to any use-case. It should be checked if this

profile is really needed in the specification or if important

use-cases regarding this user profile are missing.

Figure 4. Tasks (unfolded)

Additionally, fig. 6 shows different goals and detailed

artifact information for the goal ”Visualize Knowledge”.

It can be seen that the use-case ”Edit RE Artifacts” is

connected to a goal, but the others are not. Different patterns

in the visualizations are hints for various problems. Though

Figure 5. Subtasks (folded)

Figure 6. Goals (filtered)

the above questions can be answered differently, e.g. using

filters and database queries, these patterns deliver hints for

broken or underspecified data, which should be analyzed and

corrected before entering the final specification.

V. DISCUSSION

Three exemplary questions have been answered by ap-

plying Sunbust and Netmap visualizations on realistic spec-

ification data. The questions could be answered using the

combination of both visualization techniques. The questions

exemplified in this paper are very basic and may also be

answered differently, e.g. using complex database queries;

as such the visualizations have to be evaluated in real life

20

projects. However, though the first question can be answered

using a traditional tree rendering as well, Sunburst saves

space and the number of child nodes – in our case the

number of use-case steps – is more comparable because

of the radial layout. In traditional graph layouts, humans

could hardly derive question 2 and 3. Graphs would become

rather large with this amount of nodes and data filtering

generally changes the way the graph is displayed when

automatic layouts are used, all of which confusing the users.

Questions 2 and 3 may be answerable using a matrix, but the

drawbacks of matrices as represented above would become

evident. Though the example questions can be answered

differently, the potential of Sunburst and Netmap in RE

could be demonstrated and it could be shown that humans

can quickly detect patterns regarding a specifications quality.

Both visualization techniques are not very helpful with-

out filters. Although they perform better than other graph

layouts, they do not scale endlessly. Therefore, additional

filtering techniques in combination with different visualiza-

tions should be further researched. The example uses several

questions regarding specification quality and completeness.

Different filters and filter settings may be related to different

questions, that are of interest when browsing, editing or

building a requirements knowledge base. On the other hand

adding additional filters introduces problems; e.g. whenever

the data is filtered for a certain part (branch) of the specifi-

cation. Traceability links to other parts of the specification

are not shown in the Netmap, since these nodes are not

displayed on the ring.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have shown that Sunburst and Netmap vi-

sualizations are promising approaches for visualizing trace-

ability links between requirements artifacts. They enable

effective browsing of and intuitive navigation within the

requirements knowledge base. The example questions in

this paper are defined from a quality assurance perspec-

tive. In future work, we want to implement additional

filters such that more questions can be answered using the

presented visualizations. This way filter configurations for

different stakeholder can be defined. Additionally, we want

to combine both visualization techniques with other graph

visualizations to alleviate some of the problems that get

introduced by additional filtering techniques.

The visualizations presented in this paper have been im-

plemented in a requirements plugin for the Redmine project

management (PM) tool [13]. The RE plugin is developed

in the BMBF project KoREM and uses the JavaScript Visu-

alization Toolkit [11] to plot Sunburst and Netmap graph-

ics. Redmine is web-based and consists of a bug-tracker,

wiki, forum and other sources of PM knowledge. This

infrastructure enables requirements and project management

knowledge to be interwoven more tightly, as the RE Plugin

is able to connect to Redmines knowledge management

infrastructure. Thus, the integration enables us to visualize

additional information together with requirements artifacts

in the future.

ACKNOWLEDGMENT

This work is partly funded by the BMBF (German Federal

Ministry of Education and Research) within the research

project KoREM (http://www.korem.de). We thank everybody

involved in the Javascript Visualization Toolkit project and

at the Redmine project for providing his or her work open-

sourced. The RE Plugin developed in KoREM will be

returned to the community in a subsequent release.

REFERENCES

[1] K. Pohl, ”Requirements Engineering: Fundamentals, Princi-
ples, and Techniques”. Springer Publishing Company, 2010.

[2] O. Gotel and A. Finkelstein, ”An analysis of the requirements
traceability problem” in Software Change Impact Analysis, R.
Arnold and S. Bohner, Eds. IEEE Computer Society Press,
1996.

[3] R. Spence, ”Information Visualization”, Addison Wesley, 2000

[4] A. Marcus, X. Xie and D. Poshyvanyk, ”When and how to
visualize traceability links?” In TEFSE ’05: Proceedings of the
3rd international workshop on Traceability in emerging forms
of software engineering (New York, NY, USA, 2005), ACM,
pp. 56-61.

[5] S. Winkler and J. Pilgrim, ”A survey of traceability in require-
ments engineering and model-driven development”. Softw.
Syst. Model. 9, 2010, pp. 529-565.

[6] E. Hull, K. Jackson, J. Dick, ”Requirements Engineering”.
Springer, 2nd edition, 2005.

[7] J. Tidwell, ”Designing interfaces”, O’Reilly Media, Inc., 2006

[8] P. Heim, S. Lohmann, K. Lauenroth, and J. Ziegler. ”Graph-
based visualization of requirements relationships”. In Pro-
ceedings of the 2008 Requirements Engineering Visualization,
REV ’08, pages 51-55, Washington, DC, USA, 2008. IEEE
Computer Society.

[9] I. Herman, G. Melancon, M.S. Marshall, ”Graph visualization
and navigation in information visualization: a survey”. IEEE
Trans. Vis. Comp. Graph. 06(1), 2000, pp. 24-43

[10] J. Stasko, R. Catrambone, M. Guzdial, and K. McDon-
ald, ”An evaluation of space-filling information visualizations
for depicting hierarchical structures”. International Journal of
Human-Computer Studies, 53(5), 2000, pp. 663-694.

[11] N. G. Belmonte, ”The Javascript Visualization Toolkit”,
http://thejit.org, 2011.

[12] Netmap Analytics Pty. Limited, http://www.netmap.com.au,
2007.

[13] J.-P. Lang, Redmine, http://www.redmine.org, 2011.

21

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

