Traceability between System Model, Project Model and Source Code

Alexander Delater, Barbara Paech

Institute of Computer Science, University of Heidelberg, Germany

{delater,paech}@informatik.uni-heidelberg.de

Supported by UNICASE
http://www.unicase.org

%

software Sl R
engineering
heidelberg

Traceability from source code to system
model elements like requirements has been
extensively researched. Even though these
approaches use different heuristics and
methods to compute traceability links between
requirements and source code, they do not
return very satisfying and dependable results.

We not only consider the system model, but
also the project model, which is used for
planning and organization In software
development projects.

The MUSE model (Management-based
Unified Software Engineering) [1] integrates
the system model and project model. The
MUSE model is implemented in the model-

based CASE tool UNICASE [2].

In this thesis, we plan to extend the MUSE
model by a code model to support traceability
to the source code. We want to create and
utilize links between elements from system
model, project model and code model.

may
' Problems

Define representations of source code
that represent elements of code model.

Q Propose (semi-) automatic approach for
creating traceability links between
requirements and source code utilizing
project model elements.

Q ldentify relevant traceability links.

Q Improve impact analysis by using
captured and inferred traceability links.

_-
-
.
y

MUSE model [1]

System Model

e Requirement
e Use Case

O
<>

Manual/
Capture

Extension

Project Model Code Model

e \Work ltem
e Developer

o
<>

éManuaI/é
Capture

e File Resource
e Revision

Q Representations of Source Code

-~

__ s

>

et L 1 B T O

S8J3C REARAL w8 a

.“I_— -

- >
-

T ——

Yot prire

~

3 ’
Resource m

k File-based / KChange-based /

Q Capturing & Inferring Traceability Links

su\

=

e
[

¥
t
-

S

File Line(s) of Revision

Code

A developer selects a work item and starts
implementation. While working on the work
item, all system elements (e.g. requirements,
design documents) the developer looks at
during implementation are captured . After
finishing the implementation, all changes In
the source code are linked to the work
item @) . We have to study whether the set of
links of one work item supports efficient
navigation between all linked elements @) .

] G Infer Traceability Links

Q Identifying Relevant Traceability Links

The approach for capturing and inferring
traceability links might create a lot of links.
Support for the derivation of the most
relevant links Is necessary. We plan to
iImplement an algorithm that provides a
relevance ranking for each link based on the
change history of the elements connected by
the link. The impact analysis can focus on
the most relevant traceability links.

Q Supporting Impact Analysis

We plan to implement an algorithm for impact
analysis using the most relevant captured
and inferred traceability links. This algorithm
bridges the gap between requirements and
source code to answer questions as: "What
parts of the source code need to be changed
based on a change in a requirement?”. This
algorithm should provide more detailed
results during change management than
existing algorithms.

This work is presented at the Doctoral Symposium at REFSQ 2012, 19-22 March 2012, Essen, Germany

In 2011, we provided (semi-) automatic
support for capturing traceability links
between project model and code model.

We used patches and revisions in a version
control system as two possible types of
representation of source code.

Changes to the source code are tracked and
when the developer commits some code
changes, links between the code changes and
the work item are captured.

In 2012, we want to study more options for the
representation of source code.

Next, we plan to provide (semi-) automatic
support for capturing traceability links
between system model and project model Iin
UNICASE. We will implement an algorithm
providing a relevance ranking for each link.

We will implement an algorithm for impact
analysis using the most relevant captured and
inferred traceability links. We plan to evaluate
the algorithm using data from the open source
project UNICASE.

We expect to finish this thesis by mid 2013.

\“ References

[1] Helming, J., Koegel, M., Naughton, H. Towards
traceability from project management to system
models. In TEFSE '09: Proceedings of the 2009
ICSE Workshop on Traceability in Emerging
Forms of Software Engineering, pp. 11-15. IEEE
Computer Society (2009)

[2] UNICASE Project, http://www.unicase.org

http://se.ifi.uni-heidelberg.de



