

Copyright © ACM, 2014.

The electronical article “Classifying Unstructured Data into Natural Language
Text and Technical Information” is posted here by permission of ACM for your
personal use. Not for redistribution. The definitive version was published in
Proceedings of the 11th Working Conference on Mining Software Repositories
(MSR’14), pp. 300-303;
https://dl.acm.org/citation.cfm?doid=2597073.2597112

Classifying Unstructured Data into Natural Language Text
and Technical Information

Thorsten Merten
Bonn-Rhein-Sieg University

of Applied Sciences, Germany
Dpt. of Computer Science
thorsten.merten@h-

brs.de

Bastian Mager
Bonn-Rhein-Sieg University

of Applied Sciences, Germany
Dpt. of Computer Science

bastian.mager.2010w@
informatik.h-brs.de

Simone Bürsner
Bonn-Rhein-Sieg University

of Applied Sciences, Germany
Dpt. of Computer Science
simone.buersner@h-

brs.de

Barbara Paech
University of Heidelberg, Germany

Software Engineering Group
paech@informatik.uni-heidelberg.de

ABSTRACT
Software repository data, for example in issue tracking sys-
tems, include natural language text and technical informa-
tion, which includes anything from log files via code snippets
to stack traces.

However, data mining is often only interested in one of the
two types e.g. in natural language text when looking at text
mining. Regardless of which type is being investigated, any
techniques used have to deal with noise caused by fragments
of the other type i.e. methods interested in natural language
have to deal with technical fragments and vice versa.

This paper proposes an approach to classify unstructured
data, e.g. development documents, into natural language
text and technical information using a mixture of text heuris-
tics and agglomerative hierarchical clustering.

The approach was evaluated using 225 manually anno-
tated text passages from developer emails and issue tracker
data. Using white space tokenization as a basis, the overall
precision of the approach is 0.84 and the recall is 0.85.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Algorithms

Keywords
Mining software repositories, unstructured data, preprocess-
ing, heuristics, hierarchical clustering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 - June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

1. INTRODUCTION
Software repositories try to store data in a structured and

machine-readable manner. However, developers tend not to
use these facilities and store their data in a way most con-
venient for fulfilling their goals. For example, a bug report
in an issue tracking system (ITS) contains natural language
text to describe the bug, stack traces to give technical in-
formation about the problem and additionally code snip-
pets may be pasted in a comment to discuss how the bug
should be fixed. A similar mixture of document types can
be found in other repositories, e.g. in development mail-
ing lists. Though many ITSs allow data structuring, e.g.
by using tags to identify code or categories for issues, these
methods are not always used [9].

Why is this mixture of document types a problem in Min-
ing Software Repositories? We know that preprocessing is
essential for data and especially text mining techniques [8,
pp. 84] [11, pp. 349] [7, p. 57] and that machine learn-
ing should be applied to homogenous content. Further-
more, most feature selection techniques take the structure
of natural language into account. In contrast, code snippets,
patches, log files and stack traces look very different from
natural language text, as they include repetitive terms or
lines. This difference reduces data quality and makes data
inhomogenous and noisy and machine learning techniques
harder to apply.

The approach presented in this paper classifies unstruc-
tured data into natural language text and other technical
information. Technical information includes code, patches,
stack traces or log file excerpts. The approach can be used
either as a preprocessing step, if an analyzed software repos-
itory contains noisy natural language text1, or it can be ap-
plied on its own e.g. to identify code snippets. It was eval-
uated on a total of 225 documents extracted from ITSs and
mailing lists from nine different software projects.

In the next section, the details of the approach are pre-
sented. Section 3 describes the evaluation procedure and
evaluation results; Section 4 discusses related work and sec-
tion 5 concludes the paper and shows directions for current
and future work.

1where noise is technical information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the author/owner(s). Publication rights licensed to ACM.

MSR’14, May 31 – June 1, 2014, Hyderabad, India
ACM 978-1-4503-2863-0/14/05
http://dx.doi.org/10.1145/2597073.2597112

300

2. THE APPROACH
The proposed approach2 segments the documents either

by line or white space3 tokenization. Then it uses multi-
ple heuristics to initially identify the technical information
and finally an agglomerative hierarchical clustering is used
to find accumulations of technical and natural language seg-
ments. It is independent of both the document’s program-
ming language(s) and the natural language(s) and does not
require an explicit training phase4.

2.1 Heuristics for Text Detection
The current implementation uses the following heuristics

to identify technical information: 1) A Keyword Detection,
which contains keywords from different programming lan-
guages and was compiled using the ten most popular lan-
guages from the TIOBE index5, 2) a Fuzzy Line Equality
Detection, which tries to find similar-looking lines, often oc-
curring in log files or stack traces, 3) a Fuzzy Patch Detec-
tion, which searches line by line for common components of
a patch (according to the diff-format), similar to the detec-
tion method in [5], 4) several Regular Expression Detections,
which are used to search for different occurrences of special
characters (e.g. parentheses or asterisks), indentations or
camelcase. Each heuristic is applied to the text and marks
a set of detected sections as technical information, compara-
ble to using a highlighter. Since several heuristics are in use,
text can potentially be marked multiple times. This, how-
ever, has no influence, i.e. no weight is added to multiply
marked text.

Each heuristics can be customized according to the ana-
lyzed repository. For example, regular expressions can be
modified for an ITS that uses tags to render code snippets6.
Similarly the Fuzzy Line Equality heuristic can be set to
compare the next n lines to the current line. This setting is
often useful if a log file or a stack trace has a similar format
in general but includes different looking lines in between.
Our experiments showed that n = 3 is a reasonable default
for this parameter and this default has also been used in
evaluation.

2.2 Clustering and Classification
The heuristics alone generally fail in two ways: Firstly,

they mark some natural language text as technical by mis-
take. Secondly they miss some technical information. For
example, in Figure 1 the heuristics will only detect the seg-
ments printed in bold font.

somenatural language text . . .
void detector (int detection) {

print(” For the heuristics ‘detector’, ‘detection’ and
most of this text look like natural language”)

}
more code and technical information . . .

Figure 1: Classification example before clustering

2source code and evaluation documents can be downloaded
at http://www2.inf.fh-bonn-rhein-sieg.de/∼tmerte2m
3every character sequence separated by one or more space
or tab characters
4heuristics and clustering thresholds can be adjusted
5http://www.tiobe.com , 09/2013
6very common tags are <pre> and </pre> to identify code

Therefore an agglomerative (or bottom-up) clustering al-
gorithm [10, p. 502] is applied to the tokens of the text to
correct the heuristics’ results. The clustering tries to ‘fill
the gaps’. The clustering algorithm is presented in Figure
2. Initially, it considers every token xi as its own cluster
ci, where C is the set of all clusters. In each iteration, two
clusters of C are merged based on their similarity as sim(χ)
shown in Equation 1, therefore it is possible to merge sim-
ilar clusters even if they are not close to each other. The
clustering is stopped if the minimum similarity smin cannot
be reached.

sim(ci, cj) =

1 if intersect(ci, cj) = 1

1− dist(ci,cj)∑
c∈C |c|

if class(ci) = class(cj)

0 else

(1)

The class function in Equation 1 returns either natural lan-
guage text or technical information if the ratio of technical
information characters, as determined by the heuristics is
greater or equal 0.7. The dist function returns the amount
of tokens between ci and cj . Overall, the clustering presumes
that smaller, differently classified clusters between clusters
of the same class have been wrongly classified by the heuris-
tics. The effect of the clustering is that those smaller clusters
are gulped down, when merging.

The final result of the algorithm is an annotated text
where each token is classified as technical information or
natural language text.

Given: a set χ = x1, . . . , xn of objects
a function sim: P (χ)× P (χ)→ R

1: for i := 1 to n do
2: ci := {xi}
3: end for
4: C := {ci, . . . , cn}
5: j := n+ 1
6: while |C| > 1 do
7: (cn1, cn2) := arg max(cu,cv)∈C×C sim(cu, cv)
8: if sim (cn1, cn2) < smin then
9: stop

10: end if
11: cj := cn1 ∪ cn2

12: C := C\{cn1, cn2} ∪ {cj}
13: j := j + 1
14: end while

Figure 2: Bottom-up clustering (adapted from [10])

3. EVALUATION

3.1 Datasets
To evaluate the approach, 225 documents were sampled

randomly from issue trackers and mailing list of nine Open
Source projects (25 Documents/Project). Most data were
obtained from Apache projects since they are easily accessi-
ble and most of them use multiple programming languages.
Each document was manually annotated using white space
tokenization and results were compared to the automated
results.

We sampled from multiple projects to show that reason-
able default settings of the approach can handle different

301

Table 1: Evaluated documents
Project Language Source # of documents with Link

nl only c ls p
Apache ActiveMQ Java, C, C++, Ruby,

Perl, Python (+2)
ITS 1 13 14 1 http://issues.apache.org/jira/

browse/AMQ
Linux Kernel C ITS 0 12 9 11 http://bugzilla.kernel.org
Mozilla Core + JSS C++, Java ITS 1 13 2 13 http://bugzilla.mozilla.org
Apache OpenOffice C++ ITS 0 23 2 0 http://issues.apache.org/ooo
Apache Jmeter Java ITS 2 13 7 3 http://jmeter.apache.org/issues.html
Apache OFBiz C, C++, C#, Java,

PHP, Python, Ruby
ITS 2 19 6 0 http://issues.apache.org/jira/

browse/OFBIZ
Apache Avro Java, XML, Python,

Ruby, PHP (+4)
Mail 2 19 6 2 http://mail-archives.apache.org/

mod mbox/avro-dev
Apache Camel Java, Groovy,

JavaScript, XML
Mail 1 19 12 1 http://mail-archives.apache.org/

mod mbox/camel-dev
Apache Thrift ActionScript, D, Del-

phi, Erlang (+14)
Mail 1 19 6 1 http://mail-archives.apache.org/

mod mbox/thrift-dev

document types and programming languages. Table 1 pro-
vides information on the sources of the evaluated documents,
including their programming language and source type (ITS
or email). Additionally it shows the number of manually
annotated documents containing natural language text (nl)
only or a mixture of natural language text and code (c), log
files or stack traces (l/s) and patches (p). The average doc-
ument size was 1698 characters.

3.2 Analysis of the Obtained Results
True positives, true negatives, false positives and false

negatives were measured by comparing the output of the
algorithm to that of the manually annotated documents.
Manual annotation used white space tokenization. We also
conducted line tokenization, considering lines with less than
50% technical information as natural language text7.

The evaluation results are presented using the standard
measures of precision (p), recall (r) and F-measure (F1). Ta-
ble 2 shows the results for each project using line segmenta-
tion and Table 3 shows the results for white space tokeniza-
tion. To show that, even without further training, simple
heuristics are applicable for multiple projects, no heuristic
parameters were changed. Multiple runs with different min-
imum similarities were made, varying smin from 0.5 to 1.0
in 0.05 steps.

The best result using line tokenization over all projects
was retrieved with a minimum cluster similarity smin =
0.9. Here the approach reached p = 0.77 and r = 0.88
giving F1 = 0.82. The heuristics alone, without applying
the clustering, gave p = 0.69 and r = 0.88, therefore the
clustering improved the precision by about 8%.

For white space tokenization, we received p = 0.84 and
r = 0.85 giving F1 = 0.84. The values before clustering were
p = 0.67 and r = 0.84. Hence the influence of clustering is
even more noticeable, in this case improving the precision
by just over 17% and the recall by 1%.

In all experiments, the clustering algorithm reached a
maximum performance with smin from 0.8 to 0.95, which
therefore present reasonable default values for smin. Figure
3 confirms this result showing different values for smin for
line and white space (dotted) tokenizations. Furthermore, it

7In the evaluation documents, such mixed lines generally
contained only about 4% technical information

Table 2: Evaluation Line Tokenization
Project smin p r F1

Apache ActiveMQ 0.8 0.91 0.91 0.91
Apache Avro 0.85 0.65 0.83 0.73
Apache Camel 0.95 0.74 0.90 0.81
Apache JMeter 0.85 0.88 0.896 0.89
Apache OFBiz 0.95 0.82 0.88 0.84
Apache OpenOffice 1.0 0.80 0.91 0.86
Apache Thrift 0.9 0.58 0.83 0.68
Linux Kernel 0.85 0.87 0.94 0.91
Mozilla Core + JSS 0.75 0.78 0.86 0.82
Overall 0.9 0.77 0.88 0.82
Overall (no clustering) n/a 0.69 0.88 0.77

Table 3: Evaluation Whitespace Tokenization
Project smin p r F1

Apache ActiveMQ 0.85 0.93 0.89 0.91
Apache Avro 0.95 0.74 0.87 0.797
Apache Camel 0.9 0.76 0.86 0.81
Apache JMeter 0.95 0.912 0.83 0.87
Apache OFBiz 0.95 0.80 0.84 0.822
OpenOffice 0.95 0.87 0.89 0.88
Apache Thrift 0.95 0.71 0.86 0.78
Linux Kernel 0.9 0.96 0.92 0.94
Mozilla Core + JSS 0.95 0.80 0.82 0.81
Overall 0.9 0.84 0.85 0.84
Overall (no clustering) n/a 0.67 0.84 0.74

can be seen that the clustering step improves precision and
recall for every value of smin.

4. RELATED WORK
Various techniques have been presented to deal with the

separation of natural language text and technical informa-
tion.

Bettenburg et al. present two techniques to categorize
natural language text and technical information. The first
approach [4] is the most similar to ours and also includes
text heuristics. They first use a spell-checker to identify

302

0,65

0,7

0,75

0,8

0,85

0,9

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

M
in

im
um

 c
lu

st
er

 s
im

ila
rit

y

Precission (green), Recall (blue) for line and whitespace (dotted) segmentation

Figure 3: Precission and recall for different cluster
similarities.

wrongly written words and treat them as technical infor-
mation. Afterwards they validate the findings of the spell-
checker by applying heuristics. Their second approach uses
Island Grammars to identify patches, stack traces, source
code and enumerations [5]. The outcome of this approach,
however, is a binary classification, since it only checks whether
code, stack traces, patches or enumerations are present in
the document or not. In contrast, our approach classifies
each token.

Bacchelli et. al introduced an approach that combines
parser-based techniques with a Naive Bayes classifier as a
term-based technique [2] to classify documents on line level
in natural language, stack traces, patches, code and a class
they call junk8. Though their approach performs very well it
relies on a training dataset for Naive Bayes. Their approach
is based on earlier work [3, 1].

Cerulo et al. address the problem using Hidden Markov
Models, which train directly from the data. Their approach
does not require any manual tuning or the definition of e.g.
parsers or regular expressions and tries to learn directly from
the data [6].

5. CONCLUSION & FUTURE WORK
The paper presents a heuristic and clustering-based ap-

proach to classify document content as natural language text
or technical information. The approach can either be used
on its own to extract technical information from software
repositories or it can be combined with other text mining al-
gorithms as a preprocessing step. Our approach is the first,
to use hierarchical clustering to improve text classification.

The approach was evaluated on 225 documents on the ba-
sis of line and white space tokenization resulting in F1 = 0.82
for line and F1 = 0.84 for white space tokenization. The
improvement from clustering was most noticeable for white
space tokenization. We sampled documents from multiple
projects with different programming languages for evalua-
tion and did not change any parameters of the heuristics
during evaluation, to show that performance is good even if
the algorithm is not adjusted for a certain project or situa-
tion. That said, adjusting parameters or adding additional
heuristics to match a concrete mining problem could improve
the results.

8includes non-valuable information, such as signatures

In current and future work, we will evaluate a more de-
tailed classification that splits technical information into the
classes code, stack traces or log files and patches and eval-
uate the influence of clustering for these classes. Then, the
heuristics and the clustering algorithm should consider a
confidence weighting for each class. Finally, since the ap-
proach can be used as preprocessing for other, especially
trained, algorithms such as Naive Bayes or Support Vec-
tor Machines to ‘clean up’ noisy data, we will experiment
on the performance of such classifiers with and without the
presented approach as preprocessing.

6. ACKNOWLEDGMENTS
This work is partly funded by the Bonn-Rhein-Sieg Uni-

versity of Applied Sciences Graduate Institute.

7. REFERENCES
[1] A. Bacchelli, A. Cleve, M. Lanza, and A. Mocci.

Extracting structured data from natural language
documents with island parsing. In 2011 26th
IEEE/ACM Intl. Conference on Automated Software
Engineering (ASE 2011), pages 476–479. IEEE, Nov.
2011.

[2] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and
M. Lanza. Content classification of development
emails. 2012 34th Intl. Conference on Software
Engineering (ICSE), pages 375–385, June 2012.

[3] A. Bacchelli, M. D’Ambros, and M. Lanza. Extracting
Source Code from E-Mails. 2010 IEEE 18th Intl.
Conference on Program Comprehension, pages 24–33,
June 2010.

[4] N. Bettenburg, B. Adams, A. E. Hassan, and
M. Smidt. A Lightweight Approach to Uncover
Technical Artifacts in Unstructured Data. 2011 IEEE
19th Intl. Conference on Program Comprehension,
pages 185–188, June 2011.

[5] N. Bettenburg, R. Premraj, T. Zimmermann, and
S. Kim. Extracting structural information from bug
reports. In Proceedings of the 2008 Intl. Workshop on
Mining Software Repositories, page 27, New York,
New York, USA, 2008. ACM Press.

[6] L. Cerulo, M. Ceccarelli, M. Di Penta, and
G. Canfora. A Hidden Markov Model to detect coded
information islands in free text. 2013 IEEE 13th Intl.
Working Conference on Source Code Analysis and
Manipulation (SCAM), pages 157–166, Sept. 2013.

[7] R. Feldman and J. Sanger. The Text Mining
Handbook. Cambridge University Press, 2006.

[8] J. Han, M. Kamber, and J. Pei. Data Mining:
Concepts and Techniques. Morgan Kaufmann, 3rd
edition, 2011.

[9] K. Herzig, S. Just, and A. Zeller. It’s Not a Bug, It’s a
Feature: How Misclassification Impacts Bug
Prediction. In Proceedings of the 2013 Intl. Conference
on Software Engineering (ISCE), pages 392–401.
IEEE Press, 2013.

[10] C. Manning and H. Schütze. Foundations of Statistical
Natural Language Processing. MIT Press. Cambridge,
MA, 1999.

[11] I. Witten, E. Frank, and M. A. Hall. Data Mining.
Morgan Kauffmann, 2000.

303

	ACM_Copyright
	p300-merten

