DecDoc: A Tool for Documenting Design Decisions
Collaboratively and Incrementally

Tom-Michael Hesse*, Arthur Kuehlwein*, and Tobias Roehm
*Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
{hesse,kuehlwein } @informatik.uni-heidelberg.de
TCQSE GmbH, Lichtenbergstrasse 8, 85748 Garching b. Miinchen, Germany, roehm@csge.eu

Abstract—The outcome and quality of design decisions highly
depend on the knowledge reflected during decision-making.
Typically, making design decisions is not one singular action.
Instead, developers discuss and cooperate during requirements
engineering, design and implementation of a system to make and
adapt design decisions. This decision-making process is influenced
by different decision-making strategies, personal experiences,
and biases. In consequence, decision-related knowledge emerges
incrementally over time in an incomplete and heterogeneous
way. This hinders the documentation of such knowledge in
practice. First, most documentation tools capture decision-related
knowledge within one particular development activity. However,
they do not focus on the collaborative and shared documentation
during multiple activities. Second, static documentation templates
and formal rules are not suitable for capturing incomplete
knowledge, as additional documentation effort is imposed for
developers. Thus, text templates are not used or filled with generic
contents. As a result, decision-related knowledge remains implicit
and is not available to guide future decision-making. To address
these issues, we have created the tool DecDoc based on our
incremental documentation model. The tool enables developers
to capture decision-related knowledge and collaborate on a
comprehensive documentation of design decisions with relations
to artifacts, such as requirement specifications, design diagrams,
and code. This helps to improve the decision-making process for
design decisions, as it helps to make explicit and reflect related
knowledge during the process. In this paper, we present DecDoc
with regard to requirements from the decision-making process.
Then, we describe its application on design decisions in example
projects. Finally, we discuss our insights from using the tool and
highlight open challenges.

Index Terms—Decision documentation, design decisions, de-
cision knowledge, design decision-making, decision capturing,
design documentation, knowledge representation

I. INTRODUCTION

Developers make many design decisions, which turn out to
have a critical importance for the project’s success during mul-
tiple development activities. A broadly acknowledged example
are decisions on how to realize architecturally significant re-
quirements during the system’s design and implementation [1].
In order to make decisions, developers need to solve decision
problems, which consist of a set of alternatives and criteria
to compare them [2]. A comparison of alternatives typically
requires expert knowledge, personal experiences and the con-
text of the decision [3]. Thus, large and complex amounts of
decision-related knowledge are created, reflected, and evolved
during the decision-making process [4], [5]. We refer to this
knowledge as decision knowledge.

Decision-making processes are often performed in collab-
oration of multiple developers, when the decisions affects
different development activities. Then, the decision is made
incrementally. Documenting the emerging decision knowledge
is crucial for enabling developers to communicate and reflect
these decision-making processes and their resulting decisions.
Often, communication or reflection is necessary, as devel-
opment teams change, or the system’s design needs to be
adapted in follow-up decisions. Then, documented decision
knowledge helps to guide and improve future decision-making,
for instance by identifying patterns of strengths and weak-
nesses in current decisions [6]. However, decision knowledge
erodes quickly and might be even lost completely [4], if it is
not documented within or after decision-making processes. A
study of Tang et al. [7] found that designers miss specialized
methods and tool support to document decision knowledge.
Thus, our overall goal is to create a documentation tool for
decision knowledge, which is aligned with a collaborative and
incremental decision-making process. To integrate decision
documentation tools closely with decision-making processes,
two requirements have to be addressed. First, the tool should
enable developers to collaboratively work on a shared decision
documentation. Second, it should be possible to document
decision knowledge incrementally in a fine-grained way.

These two requirements are not sufficiently fulfilled by
current documentation tools, as described in a detailed com-
parison in Section II-C. In contrast, our tool DecDoc provides
features to enable both collaborative and incremental docu-
mentation of design decisions. In this paper, we describe the
requirements for decision documentation during collaborative
and incremental decision-making. Then, we demonstrate our
tool with decision examples from two different projects. In
addition, we discuss open challenges that we have observed
when investigating related work and applying our tool.

The remainder of this paper is structured as follows. In
Section II, we describe the requirements addressed by our
approach, and evaluate related tools. Section III provides
an overview of our documentation tool DecDoc. Then, we
describe the usage of DecDoc for realistic design decisions in
Section IV. Afterwards, we describe and discuss open chal-
lenges for DecDoc in particular and decision documentation
in general in Section V. Finally, we conclude our insights and
describe ideas for future work in Section VI.

II. REQUIREMENTS AND RELATED WORK

In this section, we introduce a running example to illustrate
our problem and solution description. Then, we introduce
the problem of collaborative and incremental decision-making
processes with the resulting requirements. In addition, we
present an overview of related work and investigate, to which
degree related tools fulfill our requirements.

A. Running Example

In the following sections, we use example design decisions
of the CoCoME project to explain and illustrate our tool.
CoCoME represents a trading system for sales management
in supermarket enterprises. Details are described in [8]. In
particular, the system covers the sales processes within single
stores as well as the enterprise-wide inventory management
for product orders to suppliers. In this paper, we assume that
the system architect Alice makes the architectural decision to
migrate major parts of CoCoME to the cloud (referred to as
1a). This decision is beneficial for the scalability and cost-
effectiveness of the system. However, it also impacts the se-
curity requirements and implementation of the application. For
instance, requirements engineer Bob is concerned whether the
security of payment data can be ensured in distributed cloud
storage (1b). In addition, developer Carol discovers during
code adaptions that the architectural change is constrained
by the system connectivity of the suppliers (1c¢). Finally, the
original design decision is reconsidered by Alice and causes
follow-up decisions (2).

B. Requirements for Documentation

The collaborative and incremental decision-making process
in our running example is depicted in Figure 1.

Alice

Carol

Refined by @ _
Incremental Rl by &&
Decision- D = =
making ek (o Decision
64 Knowledge
&,’/ / /)
Requirements Design Implementation
Engineering

Fig. 1. A Collaborative and Incremental Decision-making Process

The example highlights that multiple developers make and
refine decisions in a group decision-making situation [9]. This
situation complicates the documentation of decision know-
ledge. First, multiple developers contribute to the decision, so

that decision knowledge needs to be captured during different
development activities, and in relation to the affected artifacts.
For instance, developers collaborate during requirements engi-
neering, design and implementation to make and enforce de-
sign decisions on architecturally significant requirements [10].
Due to the nature of such requirements, the related decisions
have a wide impact on the system. However, these decisions
evolve when the addressed requirements change over time [1].
Therefore, it is important to bundle all knowledge related to
one decision to make it comprehensible for developers [11].
This is even more important, as developers may be dispersed
in different locations [9]. In consequence, developers should
be enabled to work collaboratively on the same documentation
of decision knowledge during different development activities
(requirement R1).

Second, not all decision knowledge is available at once,
as the collaborative decision-making process consists of mul-
tiple actions and discussions. For instance, former design
decisions are adapted and refined in follow-up development
iterations [12]. In addition, different developers may be in-
fluenced by different decision-making strategies, such as ra-
tional or naturalistic decision-making (abbreviated as RDM
and NDM) [3]. Then, also the related knowledge varies.
Alternatives and assessments are important components of
RDM [13], as the decision solution is determined by choice.
In contrast, claims and scenarios are typical for a march-based
identification of solutions in NDM [14]. Thus, the complete
set of decision knowledge is not available all at once. Instead,
it grows over time, and is impacted by the decision-making
strategies applied by each developer. In consequence, it should
be possible to document decision knowledge incrementally in
a fine-grained way (requirement R2).

C. Related Work

We have investigated to which degree tools from related
work fulfill our requirements. Relevant tools were identified
based on comparative studies by Ali Babar et al. [15], Tang
et al. [11], and our own study [16]. In addition, we added
two recent tools of Cleland-Huang et al. [17] and Manteuffel
et al. [18]. To cope with the described problems, decision
documentation approaches should sufficiently fulfill both re-
quirements R1 and R2.

For R1, we examined during which development activities
the tool can be used to document decisions. In addition,
we evaluated how different documentation aspects were inte-
grated. This can be realized by sharing the documentation, im-
porting knowledge, providing links, or not at all. We consider
R1 to be sufficiently fulfilled if all three development activities
are supported for decision documentation and working on
shared documentation is enabled. The results are summarized
in Table I. Several tools do support decision documentation for
two development activities, mostly for requirements engineer-
ing and design. LISA implicitly supports all three development
activities, as an integrated representation for requirements
and design decisions is provided. However, this limits the
support for complex specifications of requirements, such as

TABLE I
TooL COMPARISON REGARDING COLLABORATIVE DOCUMENTATION (R1)

Tool Supported Integration of

Activities Documentation
ADDSS [19] RE, D Links, Shared Documentation
ADkwik [20] D None
Archie [17] RE, D, 1 Links, Knowledge Import
Architecture D Links, Shared Documentation
Warehouse [21]
Archium [4] RE, D Links
AREL [22] RE, D Links

CoCoADVISE [23] D Shared Documentation

COMANCHE [24] DI Links, Shared Documentation
Enterprise Architect RE, D Links, Shared Documentation
add-in [18]

Knowledge RE, D Links, Knowledge Import,
Architect [25] Shared Documentation

LISA [26] (RE), D, I Links, Shared Documentation
PAKME [27] RE, D Links

SEURAT [28] RE, 1 Links, Knowledge Import,

Shared Documentation

RE = Requirements Engineering, D = Design, I = Implementation

use cases. Knowledge Architect and SEURAT provide the
most options for the integration of different documentation
aspects. In contrast, Archie also provides explicit support
for implementation by integrating architectural decisions and
codes files. However, it does not cover a shared documentation
of decisions. Also, the focus of Archie is more on trace-

TABLE 11
TooL COMPARISON REGARDING INCREMENTAL DOCUMENTATION (R2)

Tool Decision Iteration Refinement Strategy
Structure Support Support Support

ADDSS [19] Fixed Yes Refinement Choice
entities,
sub-types

ADkwik [20] Fixed Yes Refinement Choice
relations

Archie [17] Monolithic No Sub-types Choice

Architecture Fixed Yes No Choice

Warehouse [21] refinement

Archium [4] Monolithic No No Choice
refinement

AREL [22] Monolithic ~ Yes Refinement Choice
entities

CoCoADVISE [23] Fixed Yes No Choice,
refinement match

COMANCHE [24] Fixed Yes No Choice
refinement

Enterprise Archi- Fixed Yes No Choice

tect add-in [18] refinement

Knowledge Monolithic ~ No Refinement Choice

Architect [25] entities

LISA [26] Monolithic ~ Yes Refinement Choice
relations

PAKME [27] Monolithic No No Match
refinement

SEURAT [28] Flexible Yes Refinement Choice
entities and
relations

ability between development artifacts and not on decision
documentation itself.

For R2, we examined documentation structures prescribed
by the tool and the support of iterations within these structures.
Documentation structures can be monolithic like static text
templates, contain fixed relations, or offer flexible composi-
tions and aggregations. We also investigated whether the re-
finement of decision knowledge was supported by fine-grained
documentation entities. Moreover, we were interested in any
implicit or explicit preference for decision-making strategies
according to how solutions were documented within a tool.
This could be either “choice” for RDM or “match” for NDM
according to the strategy’s mechanism for solving decision
problems [3]. We consider R2 to be sufficiently addressed if
tools provide a flexible documentation structure with support
for iterations, refinements, and both choice and match of
solutions. The results are summarized in Table II. SEURAT is
the only tool, which provides a flexible structure for decision
documentation. SEURAT provides support for documentation
iterations with entities and relations for knowledge refine-
ment. However, like most other tools it assumes a RDM-
based solution selection by choice. In contrast, CoCoADVISE
and PAKME are the only tools, which explicitly support
the documentation of matching solutions within architectural
decisions. All other tools rely either on a monolithic or a
fixed structure. Further existing approaches provide flexible
structures with support for refinements and iterations, such as
pattern-based decision models [29] and decisions as reusable
design assets [30]. However, no tools could be found, which
implement these approaches.

Overall, it should be noted that Archie and SEURAT address
the most aspects of both requirements in comparison to
all investigated tools. Some tools address one requirement
sufficiently, such as LISA for R1. However, we did not uncover
a tool, which fulfills both requirements.

III. SOLUTION APPROACH OF DEcCDoOC

In this section, we introduce our model for decision docu-
mentation, which is implemented in our solution approach
DecDoc. Then, we briefly describe the technical foundations
of DecDoc and present its documentation features in detail.

A. Decision Documentation

Several models currently exist to document decision know-
ledge. In [16], we have presented an overview about these
documentation models for design decisions. However, no
model integrates decision knowledge documentation for re-
quirements engineering, design and implementation. In ad-
dition, most models mainly focus on capturing decisions in
monolithic knowledge entities or static text templates without
support for incremental documentation.

Due to these shortcomings, we decided to develop our
own documentation model for DecDoc, as presented in [31].
The entire model is depicted in Figure 2. It provides a
representation for general development artifacts as Knowledge
Elements with specialized Decision Knowledge Elements to

Knowledge Element
(Requirements, Design, ...)

Attached to

Identified by

“oncerns
Concerns I\

[
Problem j Solution] Context] Rationale]
Issue } Alternative Assumption] Argument]
Goal] Claim] Constraintj Assessmentj

Implication

Fig. 2. Decision Documentation Model (Source: [31])

model particular aspects of decision knowledge. The basic
element is Decision, which contains all related decision know-
ledge as DecisionComponents. Decision knowledge elements
can be added incrementally over time by different Persons.
Decisions and DecisionComponents can be linked to other
knowledge elements, for instance to requirements, design arti-
facts or code files. Different kinds of DecisionComponents are
distinguished to describe the decision’s Problem and Solution,
its Context and Rationale. Issues or Goals can be used to
document details on open questions for a decision, whereas
Alternatives and Claims represent options to solve the decision
problem. Context information may consist of Assumptions
influencing the decision, Constraints restricting the decision,
or Implications resulting from different alternatives. Reasons
for or against decision knowledge elements can be expressed
as Arguments, whereas the evaluation of criteria is documented
as Assessment.

B. Technical Foundations

Our documentation tool DecDoc is an extension to the
model-based knowledge management tool UNICASE [33] and
based on the Eclipse IDE, as depicted in Figure 3. The tool is
available via an update site [32]. The knowledge management
tool UNICASE provides an integrated model for system and
project knowledge with generic support for collaborative edit-
ing of various elements, such as use cases, UML diagrams,
or code revisions. Both UNICASE and DecDoc employ the

Fobse | UNICASE ﬂg%‘ DecDoc ‘
1/ Uses \i/ LT —— Uses
Y - Y -
S > = HeRA
SVN EMFStore | |
Code Model 3 /
_Repository _ _Repository

Fig. 3. Architecture of DecDoc

versioned model repository EMFStore [34] to persist the
knowledge models and their instances. In addition, DecDoc
imports knowledge from results produced by the HeRA plugin
for Eclipse [35], which heuristically analyzes use cases for
security concerns. DecDoc also integrates with the Papyrus
UML editor [36] for Eclipse to provide relations between de-
cisions and UML entities. Moreover, Eclipse markers and code
annotations are used to represent decision knowledge within
source code. Therefore, DecDoc synchronizes the decision
knowledge stored in the EMFStore with annotations stored
in revisions of the code repository SVN.

C. Features of DecDoc

DecDoc provides several features to address the require-
ments R1 and R2. An overview of these features is depicted
in Figure 4.

Features for Collaborative Documentation

Importer for Results of
Heuristic Use Case Analysis

Decision Editor
with Support for
Relations to:
e Use Cases.

Capture Support for
Decisions during UML Design

UML Entities,
Code Annotations for) tities
Source Code.
Java Source Code
and others
¢ Dependent or
Conflicting
‘ Dashboard & Statistics ‘ Decisions

‘ Decision Graph ‘

Features for Incremental Documentation

Fig. 4. Features provided by DecDoc

General editing support for decisions is provided by the
Decision Editor. Within this editor, developers can create and
edit any DecisionComponents collaboratively, as depicted in
Figure 5. Regarding our example, Alice initially documents
her architectural decision on the cloud migration with a
description and basic attributes, such as the current decision-
making progress or implementation status. Bob and Carol may
extend the decision concurrently with further information. For
instance, Bob links the decision to any dependent security-
related decisions for the affected use cases. Carol adds further
arguments and context information, as she proceeds with the
decision implementation. Thus, a shared documentation is
enabled. The developers can work at different locations, as
the decision knowledge is versioned and exchanged via the
EMFStore.

Features Supporting the Collaborative Documentation:
DecDoc supports the collaborative work on the shared docu-
mentation during design, requirements engineering, and imple-
mentation. First, architects and designers can capture design
decisions when editing UML diagrams. This is depicted in
Figure 6. In our example, Alice captures her decision on

Creates

Decision ~ Alice

Alice
100220161505:24

ales and order services to a relable cloud provider.
~ Annotated Model Elements

~ Is Assessed By <

Bob
e Aldds
A [S 2 Relations
Elements x L) x e x) @
) Helps to optimize costs & Improves scalabilty & Incr

unauthorized data access.

Fig. 5. Decision Editor with Decision Knowledge from Different Activities

how to adapt the architecture of CoCoME to support a cloud
environment (la), as she adapts the UML diagram containing
stored products and their orders. DecDoc allows her to create a
decision directly within the diagram, so that no context switch
is necessary. Moreover, the decision is linked to the selected
UML classes. This enables the developers to trace the decision
of Alice to all affected UML entities.

= u.
. Product
-id:long

0.* »- barcode: int

.
offers - purchasePrice : double

- name: String

M *1 @) Add Not
Alice "7, ote
Navigate >
File >
refers to Delete from Diagram
Edit >
0 Delete from Model
TE Ordertntry. — 5
-id:long iters »
1 - amount : int
Open with MEEditor
DOCuments a A Document Decision I
1

new Decision

Fig. 6. Documentation of Decisions in UML Diagrams during Design

Second, DecDoc provides a semi-automatic importer for de-
cision knowledge from heuristic security analyses of use cases.
Therefore, the Eclipse HeRA plugin is used, as described
in detail in [35]. This demonstrates the ability of DecDoc
to incorporate knowledge from external knowledge sources.
As the developers continue their decision-making process for
the CoCoME cloud migration, requirements engineer Bob
reviews and updates all affected use cases. Then he checks
with HeRA whether the changes could impact system security.
This is depicted in Figure 7. For instance, Bob discovers

potential data protection issues for payment information after
preparing the sales use case for the cloud setup. Bob discusses
these issues with Alice and Carol, and they decide to refine
their migration decision (la to 1b). The documentation of
this refinement is based on generated candidates for decision
knowledge elements from the HeRA results.

) 5 [|

Step 1: Select and group decisions to be created

Please select security issues beneath to create a documented
decision for them.

Create? ~Security Issue/Vulnerability Annotated element
7 insufficient visual cover Use Case1 - Proc...
7 insufficient protection Use Case1 - Proc...

v no authentication Use Casel - Proc...

Adds
Relations

Reset changes Deselect all|

7] Group decisions by highest-order leaf elements

Only show security issues which are not already documen

@ < Back Net> | [Finish][Concel |

Fig. 7. Extend Documentation by Incorporating Heuristic Analysis Results
during Requirements Engineering

Third, DecDoc enables developers to document their de-
sign decisions within the source code using code annota-
tions. Therefore, all decision knowledge elements are mapped
to corresponding annotations, such as @Issue for issues,
or @Claim for claims. Annotations can be used to either
document new decision knowledge or link existing decision
knowledge elements with code. We have presented the an-
notations in detail in [37]. For the CoCoME cloud migra-
tion, developer Carol starts to adapt the implementation of
the ProductOrder class and other classes implementing
sales and order processes. This is depicted in Figure 8. She
recognizes a dependency of the order process to the interfaces
of the suppliers (1b to 1c). Thus, she creates a new constraint
for the decision on cloud migration with a code annotation.

Overall, DecDoc integrates documented decision knowledge
from requirements engineering, design, and implementation
with links to related artifacts. Moreover, DecDoc can be
extended by using defined Eclipse extension points. For in-
stance, further external knowledge sources can be integrated
via Eclipse plugins, or new code annotations can be added. All
documented knowledge is bundled in a shared documentation,
which is accessible via the decision editor. Thus, DecDoc
fulfills requirement R1.

Features Supporting the Incremental Documentation: The
documentation model for DecDoc supports the incremental ag-
gregation of DecisionComponents over time, as the decision-
making process proceeds. The model does not prescribe a
static structure for decisions, and, therefore, is flexible. In addi-
tion, different kinds of DecisionComponents are distinguished,

[3) ProductOrderjava &3
package org.cocome. tradingsysten. inventory.data. store;

@ import java.util.Collection;|

O

processing pi

v

Press Enterto create a new Constraint s a chid of the selected element. Press Cliv
link the annotation to the selected Constraint.
Press Escape to close this window.

publich
4 3 Inventory
2 Inventory Overview
4 @ Data Layer

te C 4 M Decision Move sales and order services to the cloud
te s & Altemative Optimize current architecture for performance

@ Issue Performance and cost problems
4 @ Solution Migrate services to cloud
& Argument Helps to optimize costs
& Argument Improves scalability
@ Argument Increased vulnerability for unauthorized data access.
D Issue Missing integration with supplier interfaces
&) Claim Adapt our interfaces in ProductOrder
plication Layer
2) GUILayer

°

Adds further
Elements

Fig. 8. Extend Documentation with Code Annotations during Implementation

such as Problem, Solution, Rationale, or Context. This enables
developers to refine given knowledge by adding further fine-
grained decision knowledge elements. These features may lead
to complex and nested knowledge structures, as depicted in
Figure 9. The example structure shows our cloud migration
decision (la, 1b and 1c) with the knowledge created by Alice,
Bob and Carol during their respective development activities.
Within this tree structure of the knowledge elements, the
different levels represent the depth of the contains-relation.
For instance, the depicted arguments are contained within the
solution “Migrate services to cloud”. Whereas Alice and Bob
mostly documented rational decision-making elements, Carol
also used elements related to NDM. For instance, she created a
Claim to describe the adaptation of the CoCoME interfaces for
a product order during implementation. Thus, our tool allows
for a mixed documentation of both NDM and RDM within one
decision. This addresses the findings of Zannier et al. [3] that
developers tend to mix up both decision-making strategies.

M Decision Move sales and order services te the cloud.
5 Alternative Optimize current architecture for performance
<i> Issue Performance and cost problems
@ Solution Migrate services to cloud
'q}' Argument Helps to optimize costs
'q}' Argument Improves scalability
g Argument Increased vulnerability for unauthorized data access
@ Issue Missing integration with supplier interfaces
or Claim Adapt our interfaces in ProductOrder
= Constraint Suppliers need to be informed

Fig. 9. Incremental Decision Knowledge Structure in DecDoc

To enable developers to keep track with more complex
documentation structures, DecDoc provides a dashboard with
statistics for each documented decision. It calculates the num-
ber of all contained decision elements grouped by their type,
and shows all relations of the decision to other knowledge
elements. To visualize the emerged knowledge structures more
in detail, DecDoc offers a graph visualization of relations
between decisions, and for decisions with their contained
elements.

In summary, DecDoc provides a flexible knowledge struc-
ture with support for RDM and NDM knowledge elements.

Developers can refine documented decisions by either adding
new fine-grained knowledge elements of different kinds or
by editing existing elements. DecDoc enables developers to
explore the documented knowledge using the dashboard or the
graph visualization. Thus, DecDoc fulfills requirement R2.

IV. EVALUATION OF DEcDoC

We applied DecDoc on more complex and realistic data
to evaluate its feasibility for documenting design decisions.
Therefore, we have investigated transcripts of two design
sessions held by professional software designers from Adobe
and Amberpoint. The transcripts were initially distributed as
material for the international workshop “Studying Professional
Software Design” in 2010 [38]. In each design session, two
designers were asked to create the architecture for a traffic sim-
ulation system according to basic requirements. The workshop
organizers requested the designers to think aloud and to state
all thoughts explicitly. Both sessions were video-recorded and
transcribed afterwards. During the discussions, many design
decisions were made collaboratively, as both designers ex-
changed thoughts and arguments on the requirements, design
and implementation of the system. In addition, the designers
revised and adapted their decisions during the sessions. Thus,
also the incremental aggregation of decision knowledge can
be observed.

We analyzed the discussion transcripts for contained de-
cision knowledge and extracted it according to our docu-
mentation model. Thus, we performed a retrospective analysis
of decision-making processes. Details can be found in [39].
The extracted knowledge was documented with DecDoc. A
summary from DecDoc statistics is shown in Figure 10. In
total, we created 42 decisions with 380 decision knowledge
elements for both transcripts. In particular, we identified 69
claims within all decisions. This indicates that all designers
have applied not only RDM, but also NDM in their decisions.
In addition, it confirms that providing documentation elements
related to NDM is useful and important.

We also observed that complex knowledge structures
emerged during the design discussions. An example is the
decision on where to place traffic lights within the architecture
of the simulation system. For this decision, four different levels

T Decision Statistics &2

Select the element in tree viewer to show statistics regarding the contained elements.

4 (= UCI Design Transcripts(Not shared) ~ || Decision Element Elements
4 2 Decisions P Decision 2
Adu;i’:‘”;:‘i‘gpt & Arguments (overall) EY
e,
High-level organization -

Intersections & Arguments (unpesitioned) 1

Roads {f Assessment 1

Lanes @ Question 0

2) Capacity @Issue 7

) Connection of roads to intersections © Goal 5

Traffic Signals @ Solution 0
Place in hierarchy 5 Altenative 4
Safety & Claim 59
Relations amang intersections | Context 45
=) Setting timing & Assumption 2
Traffic Model < Constraint 2
Simulator “ZImplication 55

Fig. 10. Statistics for Design Decisions on Traffic Lights

of contains-relations between decision knowledge elements
were found. For instance, the designers used implications and
arguments to refine a claim. This confirms that it is useful
and important to capture design decisions incrementally when
the decision-making process of the designers proceeds during
their discussions. Altogether, we showed that it is feasible
to document complex decision knowledge in DecDoc from
collaborative and incremental decision-making processes.

V. OPEN CHALLENGES

By applying DecDoc for realistic decision data, we have
demonstrated that the tool is capable of capturing complex
knowledge structures, which emerged incrementally during the
collaborative decision-making process of multiple developers.

However, our flexible documentation approach allows for
incompleteness of the documented knowledge. This may com-
plicate the reflection and further analysis of the documentation.
Thus, it is important to provide further imports for decision
knowledge from external sources. For instance, analyses of
requirements and design specifications in Word documents
(cf. [25]) can provide further semi-automatic input for decision
knowledge from external artifacts. This lowers the manual
documentation effort for developers. In addition, a mixed
documentation according to different decision-making strate-
gies and different abstraction levels of knowledge elements
might decrease the comprehensibility of the documentation.
Developers need to identify and discuss such issues. This
is supported by the dashboard and visualizations. Then, the
developers may add the results as new knowledge elements
to optimize the documentation. However, more sophisticated
support for reviews needs to be provided. Also, we investigated
only the retrospective documentation of decision-making pro-
cesses. Further studies are required to evaluate the feasibility
of DecDoc for documenting decisions during discussions for
decision-making. Moreover, the incremental and collaborative
documentation is not the only concern of documentation-
related quality issues of decision-making. The following list
presents further challenges for documentation during decision-
making with regard to our tool and related work:

Consistency between Documentation and Implementation
of Decisions: Documentation tools could support consistency
checks between documented knowledge and decision imple-
mentation (cf. [17], [40]). This would help to ensure that all
developers are aware of the decision and implement it, unless
it is challenged explicitly. However, such consistency checks
are difficult to realize based on documentation. Typically,
they require formal verification methods for both decision
documentation and implementation artifacts, such as design
diagrams, or source code. Thus, investigating and realizing
such consistency checks requires dedicated research projects.

Focus on Important Decisions: It is not realistic that de-
velopers document all design decisions explicitly in practice.
Major reasons are the required documentation effort and
differences in creative and reflective thinking during decision-
making [41]. Thus, our documentation tool and many related
tools focus on design decisions with importance for the success

of the development project, such as architectural design deci-
sions (cf. [4], [19], [20]). However, it is an open question how
to determine the importance of decisions early during decision-
making. For instance, it is difficult to identify decisions on
architecturally significant requirements [1]. Our tool allows
for documentation at different levels of granularity and with
different kinds of knowledge entities. This depends on the
importance of a decision as perceived by developers. Then,
reviewers are required during the decision-making process,
who check that the importance of decisions was estimated
correctly [41].

Maintenance of Documentation: Many existing approaches
address the evolution of documented decisions (cf. [5], [42]).
Our tool helps to maintain documented decision knowledge,
as many developers can collaboratively maintain this docu-
mentation. This alleviates the recognition and adaption of
outdated or incorrect documentation. In addition, consistency
checks between the documentation and implementation of
decisions would be helpful to uncover inconsistencies. How-
ever, the principal problem remains that some decision know-
ledge becomes outdated or even wrong, as the system under
development and its design decisions evolve. This cannot
be addressed automatically by decision documentation tools.
Instead, developers are required to explicitly maintain their
documentation and update it, if necessary.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented our documentation tool
DecDoc. The tool addresses two requirements: Developers
are enabled to document design decisions collaboratively
during different development activities and incrementally with
fine-grained documentation elements. We investigated current
decision documentation tools and found that no single tool
fulfilled both requirements sufficiently. In contrast, our tool
enables developers to work on a shared documentation of
design decisions during requirements engineering, design and
implementation. DecDoc provides an incremental and fine-
grained knowledge model for decision documentation. Links
to other development artifacts, such as use cases, UML di-
agrams, or code files, are supported. In addition, knowledge
from external sources, like heuristic analysis results for use
case descriptions, can be imported. We have applied our tool
on realistic data of design decisions from professional software
designers. Therefore, we documented 42 decisions with 380
decision knowledge elements to show that it is feasible to
document complex knowledge structures in DecDoc.

We plan future work in two directions. First, we aim to
evaluate our tool in further case studies with professional
designers to investigate how DecDoc can be employed directly
by designers during decision-making. Also, it should be eval-
uated for which design decisions the usage of which decision
knowledge elements is beneficial to maintain a comprehensive,
but cost-efficient documentation. Second, we want to further
improve DecDoc. For instance, support for other code repos-
itories and more imports for decision knowledge should be
implemented.

ACKNOWLEDGMENT

This work was partially supported by the German Research
Foundation under the Priority Programme SPP1593: Design
For Future — Managed Software Evolution. Results described
in Section IV are based upon videos and transcripts initially
distributed for the 2010 international workshop “Studying
Professional Software Design”, as partially supported by NSF
grant CCF-0845840. We thank Barbara Paech for very helpful
discussions and feedback.

(1]
(2]

[4]

(31

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

REFERENCES

L. Chen, M. Ali Babar, and B. Nuseibeh, “Characterizing architecturally
significant requirements,” Software, vol. 30, no. 2, pp. 38-45, 2013.

T. Ngo and G. Ruhe, “Decision support in requirements engineering,”
in Engineering and Managing Software Requirements. Springer, 2005,
pp. 267-286.

C. Zannier, M. Chiasson, and F. Maurer, “A model of design decision
making based on empirical results of interviews with software design-
ers,” Information and Software Technology, vol. 49, no. 6, pp. 637-653,
2007.

A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA’05). 1EEE, 2005, pp. 109-120.

R. Capilla, F. Nava, and J. C. Duenas, “Modeling and documenting
the evolution of architectural design decisions,” in Second Workshop on
Sharing and Reusing Architectural Knowledge - Architecture, Rationale,
and Design Intent (SHARK/ADI’07). IEEE, 2007.

J. A. Maule, “Can computers help overcome limitations in human
decision making?” Int. Journal of Human-Computer Interaction, vol. 26,
no. 2-3, pp. 108-119, 2010.

A. Tang, M. Ali Babar, I. Gorton, and J. Han, “A survey of architecture
design rationale,” Journal of Systems and Software, vol. 79, no. 12, pp.
1792-1804, 2006.

S. Herold, H. Klus, Y. Welsch, C. Deiters et al., “Cocome - the common
component modeling example,” in The Common Component Modeling
Example, A. Rausch, R. Reussner, R. Mirandola, and F. PIasil, Eds.
Springer, 2008, pp. 16-53.

V. Smrithi Rekha and H. Muccini, “A study on group decision-making
in software architecture,” in Software Architecture (WICSA), 2014
IEEE/IFIP Conference on. IEEE, 2014, pp. 185-194.

B. Nuseibeh, “Weaving together requirements and architectures,” IEEE
Computer, vol. 34, no. 3, pp. 115-119, 2001.

A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. Ali Babar,
“A comparative study of architecture knowledge management tools,”
Journal of Systems and Software, vol. 83, no. 3, pp. 352-370, 2010.
A. J. Ko and P. K. Chilana, “Design, discussion, and dissent in open bug
reports,” in Proceedings of the 2011 iConference, 2011, pp. 106-113.
R. Lipshitz, G. Klein, J. Orasanu, and E. Salas, “Taking stock of
naturalistic decision making,” Journal of Behavioral Decision Making,
vol. 14, no. 5, pp. 331-352, 2001.

J. M. Carroll and M. B. Rosson, “Getting around the task-artifact cycle:
how to make claims and design by scenario,” ACM Transactions on
Information Systems, vol. 10, no. 2, pp. 181-212, 1992.

M. Ali Babar, R. C. de Boer, T. Dingsoyr, and R. Farenhorst, “Ar-
chitectural knowlege management strategies: Approaches in research
and industry,” in Second Workshop on Sharing and Reusing Ar-
chitectural Knowledge - Architecture, Rationale, and Design Intent
(SHARK/ADI’07). IEEE, 2007, pp. 35-41.

B. Paech, A. Delater, and T.-M. Hesse, “Integrating project and system
knowledge management,” in Software Project Management in a Chang-
ing World, G. Ruhe and C. Wohlin, Eds. Springer, 2014, pp. 157-192.
J. Cleland-Huang, M. Mirakhorli, A. Czauderna, and M. Wieloch,
“Decision-centric traceability of architectural concerns,” in 7th Int.
Workshop on Traceability in Emerging Forms of Software Engineering
(TEFSE’13). 1EEE, 2013, pp. 5-11.

C. Manteuffel, D. Tofan, H. Koziolek, T. Goldschmidt, and P. Avgeriou,
“Industrial implementation of a documentation framework for architec-
tural decisions,” in 11th Working IEEE/IFIP Conference on Software

Architecture (WICSA’14), 2014, pp. 225-234.
R. Capilla, F. Nava, S. Pérez, and J. C. Duefias, “A web-based tool

for managing architectural design decisions,” ACM SIGSOFT Software
Engineering Notes, vol. 31, no. 5, pp. 1-8, 2006.

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]
[33]
[34]

(351

[36]

[37]

[38]

[39]

[40]

[41]

[42]

O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster,
“Managing architectural decision models with dependency relations,
integrity constraints, and production rules,” Journal of Systems and
Software, vol. 82, no. 8, pp. 1249-1267, 2009.

M. Nowak and C. Pautasso, “Team situational awareness and archi-
tectural decision making with the software architecture warehouse,” in
Software Architecture: 7th European Conference (ECSA’13). Springer,
2013, pp. 146-161.

A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model for
design traceability and reasoning,” Journal of Systems and Software,
vol. 80, no. 6, pp. 918-934, 2007.

P. Gaubatz, I. Lytra, and U. Zdun, “Automatic enforcement of constraints
in real-time collaborative architectural decision making,” Journal of
Systems and Software, vol. 103, pp. 128-149, 2015.

G. Canfora, G. Casazza, and A. De Lucia, “A design rationale based
environment for cooperative maintenance,” Int. Journal of Software
Engineering and Knowledge Engineering, vol. 10, no. 5, pp. 627-645,
2000.

A. Jansen, P. Avgeriou, and J. S. van der Ven, “Enriching software
architecture documentation,” Journal of Systems and Software, vol. 82,
no. 8, pp. 1232-1248, 2009.

G. Buchgeher and R. Weinreich, “Automatic tracing of decisions to
architecture and implementation,” in 9th Working IEEE/IFIP Conference
on Software Architecture (WICSA’11). 1EEE, 2011, pp. 46-55.

M. Ali Babar and 1. Gorton, “A tool for managing software archi-
tecture knowledge,” in Second Workshop on Sharing and Reusing
Architectural Knowledge - Architecture, Rationale, and Design Intent
(SHARK/ADI’07). IEEE, 2007, pp. 11-17.

J. E. Burge and D. C. Brown, “Software engineering using rationale,”
Journal of Systems and Software, vol. 81, no. 3, pp. 395413, 2008.
N. B. Harrison, P. Avgeriou, and U. Zdun, “Using patterns to capture
architectural decisions,” Software, vol. 24, no. 4, pp. 38-45, 2007.

O. Zimmermann, “Architectural decisions as reusable design assets,”
Software, vol. 28, no. 1, p. 64, 2011.

T.-M. Hesse and B. Paech, “Supporting the collaborative development
of requirements and architecture documentation,” in 3rd Int. Workshop
on the Twin Peaks of Requirements and Architecture. 1EEE, 2013, pp.
22-26.

“Update Site for DecDoc,” URL retrieved in 02-2016. [Online]. Avail-
able: http://svn.ifi.uni-heidelberg.de/unicase/0.5.2/ures/decdoc-features/
“UNICASE,” URL retrieved in 02-2016. [Online]. Available:
http://unicase.org/
“EMFStore,” URL retrieved
http://eclipse.org/emfstore/
T.-M. Hesse, S. Gaertner, T. Roehm, B. Paech, K. Schneider, and
B. Bruegge, “Semiautomatic security requirements engineering and evo-
lution using decision documentation, heuristics, and user monitoring,”
in First Int. Workshop on Evolving Security and Privacy Requirements
Engineering (ESPRE). 1EEE, 2014, pp. 1-6.
“Papyrus,” URL retrieved in 02-2016.
https://eclipse.org/papyrus/

T.-M. Hesse, A. Kuehlwein, B. Paech, T. Roehm, and B. Bruegge,
“Documenting implementation decisions with code annotations,” in 27th
Int. Conference on Software Engineering and Knowledge Engineering.
KSI Research Inc., 2015, pp. 152-157.

A. van der Hoek, M. Petre, and A. Baker, “Workshop
“Studying Professional Software Design” at University of California,
Irvine,” 2010, URL retrieved in 02-2016. [Online]. Available:
http://www.ics.uci.edu/design-workshop/

T.-M. Hesse and B. Paech, “Documenting relations between require-
ments and design decisions: A case study on design session transcripts,”
2016, accepted to appear.

O. Zimmermann, T. Gschwind, J. Kiister, F. Leymann, and N. Schus-
ter, “Reusable architectural decision models for enterprise application
development,” Software Architectures, pp. 15-32, 2007.

M. Razavian, A. Tang, R. Capilla, P. Lago ef al, “In two minds:
How reflections influence software design thinking,” VU University
Amsterdam, Tech. Rep., 2015.

R. Capilla, O. Zimmermann, U. Zdun, P. Avgeriou, and J. M. Kiister, “An
enhanced architectural knowledge metamodel linking architectural de-
sign decisions to other artifacts in the software engineering lifecycle,” in
Software Architecture: 5th European Conference (ECSA’11). Springer,
2011, pp. 303-318.

in 02-2016. [Online]. Available:

[Online]. Available:

