
Documenting Relations between Requirements
and Design Decisions: A Case Study on Design

Session Transcripts

Tom-Michael Hesse and Barbara Paech

Institute of Computer Science, Heidelberg University
Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

{hesse,paech}@informatik.uni-heidelberg.de

Abstract. Context/Motivation: Developers make many important
decisions as they address given requirements during system design. Each
decision is explained and justified by decision-related knowledge. Typi-
cally, this knowledge is neither captured in a structured way, nor linked
to the respective requirements in detail. Then, it is not obvious, how
design decisions realize the given requirements and whether they further
refine or shape them. Thus, the relations and alignment of requirements
and design cannot be assessed properly. Problem/Question: While
there are several studies on decision-making in general, there does not
exist a study uncovering how decision-related knowledge emerges based
on requirements. Such a study is important to understand the inter-
twined relations of requirements and design decisions as well as how
requirement descriptions could be enhanced with feedback from design
decision-making. Principal Idea/Results: We applied a flexible docu-
mentation approach for decision-related knowledge on discussion tran-
scripts of two design sessions with professional designers. We analyzed
the discussions for decision-related knowledge and documented it to-
gether with its relations to the given requirements. Several complex and
incrementally growing knowledge structures for decisions were found to
emerge in relation to the given requirements. Also, we uncovered that
decision-related knowledge contained uncertainties about requirements
and further refined them. Contribution: Our study uncovers detailed
relations between requirements and design decisions and thereby im-
proves the understanding of their mutual impact on each other. We also
derive recommendations for the cooperation between requirements en-
gineers and designers in practice. In addition, we demonstrate that our
documentation approach for decision-related knowledge provides a com-
prehensive view on decisions and their relations to requirements.

Keywords: Decision documentation, decision-making, design decisions, require-
ments traceability, case study



1 Introduction

During software design many decisions are made. On the one hand, such de-
sign decisions significantly shape the structure of the developed system [11] with
respect to the given requirements. On the other hand, design decisions also im-
pact these requirements [16], as developers face uncertainties and need to clarify
them. In addition, design decisions can potentially restrict or extend the given
requirements for the system. Thus, knowledge about design decisions is crucial
to assess the intertwined relations between requirements and design [8]. Typi-
cally, this decision-related knowledge is complex. For instance, it may consist
of multiple issues and goals, alternatives for solving the decision problem, ad-
ditional context information or rationales justifying the choice. We will refer
to this knowledge as decision knowledge and call its belonging entities decision
knowledge elements. All of these elements can be related to requirements and,
therefore, can be important drivers of the system’s design.

Whereas several studies exist on decision-making in design (cf. [5,22,25]), cur-
rently no study explicitly addresses relations between requirements and decision
knowledge elements in detail. Such a study is hindered by the fact that compre-
hensive decision knowledge is often not accessible due to missing documentation.
Even if decisions are documented, detailed knowledge structures are mostly not
covered. Then, also relations to requirements are only captured coarse-grained
for entire decisions. However, as requirements might be the origin or driver of
particular decision knowledge elements [8], a fine-grained decision documenta-
tion of realistic design discussions is needed as a foundation for this study.

In this paper, we investigate the design discussion transcripts of professional
software designers to identify any contained decision knowledge elements with
their relations to requirements. Therefore, we have applied our incremental docu-
mentation approach for decision knowledge [8] on these transcripts. Then, the
resulting knowledge structures and relations were analyzed. Our overall goal is
to better understand how given requirements are exploited by designers in their
design decision knowledge. The contribution of our study to this goal is to ana-
lyze the relations between requirements and decision knowledge elements stated
by designers in their decisions. We identified and examined emerged structures
of decision knowledge elements and their detailed interaction with requirements.
This helps to understand how requirements and design decisions influence each
other. Based on these findings, software designers can be supported in identi-
fying and documenting the relevant decisions with respect to requirements. In
addition, our findings provide insights on how requirements could be enhanced
with feedback from the design process, for instance by clarifying potential uncer-
tainties with the stakeholders. Moreover, we demonstrate the capability of our
documentation approach to create a comprehensive view on decision knowledge
and its relation to requirements for design decisions.

The remainder of this paper is structured as follows. In Section 2, we briefly
describe our decision documentation approach and introduce the investigated de-
sign discussion transcripts with related studies. Section 3 presents our approach
for coding and analyzing the transcripts with our research questions and the



resulting coding table. In Section 4, we describe our findings. Then, these results
and the threats to validity are discussed in Section 5. Finally, we summarize our
findings and present ideas for future work in Section 6.

2 Background and Related Work

In this section, we introduce our approach for decision documentation. Then, we
briefly describe the investigated design discussions with the addressed require-
ments and present related studies for the transcripts and our research method.

Decision Documentation As already defined, decision knowledge is concerned
with all information developers need to understand a given decision problem, its
context and justifications for the decision. A decision problem at least comprises
a set of alternatives, which can be compared by different criteria [15]. The con-
text of decisions might consist of constraints brought up by requirements or
assumptions on the environment of the developed system. So, the context might
constitute or influence criteria within the decision problem. Justifications for
the decision are typically given in form of arguments supporting or challenging
alternatives. As we have pointed out in [17], different models address the docu-
mentation of decision knowledge during requirements engineering and software
design. However, these models either represent the entire decision in a summa-
rized way (e.g., in pre-defined textual templates) or they only focus on parts of
decision knowledge. Then, not all structures and relations within decision know-
ledge can be captured. In addition, the existing approaches do not support an
incremental documentation of decision knowledge.

Due to these shortcomings, we decided to apply our own decision documenta-
tion model as presented in [8]. Our model offers a variety of different knowledge
elements and is depicted in Figure 1.

Knowledge Element

(Requirements, Design, ...)

Decision

Problem Solution Context Rationale

Contains

Contains

Issue

Goal

Alternative

Claim

Assumption

Constraint

Argument

Assessment

Identified byDecisionComponent

Attached to

Person

Role

Has

Taken by

Concerns

Implication
Decision Knowledge Elements

Fig. 1. Decision Documentation Model according to [8]



All knowledge elements concerned with particular aspects of decision know-
ledge are called decision knowledge elements. The basic element is Decision,
which contains all related decision knowledge elements as DecisionComponents.
Decision knowledge elements can be added incrementally over time by different
Persons. Decisions and DecisionComponents can be linked to other knowledge
elements, for instance to requirements or design artifacts. Moreover, different
kinds of DecisionComponents are distinguished to describe the decision’s Prob-
lem and Solution, its Context and Rationale. Problem elements contain details on
the necessity to make a decision, for instance as Issues or Goals to be addressed
by a decision. Solution elements contain options for the decision, like a Claim
on how to solve a problem or different Alternatives. Context elements represent
information on the environment of the decision and its knowledge elements. Such
information can be given by Assumptions influencing the decision, Constraints
restricting the decision, or Implications resulting from different alternatives. Ra-
tionale elements contain reasons related to other decision knowledge elements,
such as Arguments for or against an alternative or their justification by an As-
sessment of criteria.

Investigated Data The investigated data are transcripts of three design ses-
sions, which were initially distributed as material for the international workshop
“Studying Professional Software Design” in 2010 [9]. In all sessions, the teams
received a textual description of their task. They were given one hour and fifty
minutes to create a high-level system design for a traffic simulation system.
The task description contained a set of briefly described requirements for the
simulation system. An overview of these requirements is given in Table 1. The
requirements cover different aspects of the system model, such as the represen-
tation of intersections, lights, traffic sensors and traffic simulation. We will refer
to these aspects as the System category. In addition, the interaction of the users
with the system is described. For instance, the users shall control the traffic
simulation or traffic density. We will refer to this as the Interaction category.

The designers were instructed to use a whiteboard for any drawings or notes,
but no other instructions were given. Each session was held by two professional
software designers and recorded on video as well as transcribed by the workshop
organizers. We have investigated two transcripts with designers from Adobe and
Amberpoint. The third transcript was not investigated, as the respective session
was shorter than the others and deviated in conditions.

Related Studies In several studies on design decision-making (cf. [5,22,25])
complex decisions from real-world projects were investigated. These studies fo-
cus on the process of decision-making and the applied decision-making strate-
gies, but they did not consider the related requirements extensively. Ko and
Chilana [13] investigate decisions in issue reports of different large open-source
projects. Although they evaluate design decisions with more fine-grained know-
ledge structures, they assess requirements only in a limited way by software
qualities.



Table 1. Summary of Requirements Given to the Designers

No. Content of Requirement

Functional Requirements

R-I Enable students to create a visual map with at least six intersections and
roads of varying length as simulation area.

R-II Enable students to describe the behavior and timing of traffic lights; the
system shall allow for left-hand green arrow lights.

R-II.a Combination of traffic lights, which result in crashes, are not allowed.
R-II.b Every intersection on the map is a 4-way intersection and has traffic lights.
R-II.c Enable students to choose for each intersection to have sensors, which trigger

the traffic lights.
R-III Enable students to simulate traffic flows on the map in real-time; the system

shall depict the traffic flows and traffic light states.
R-IV Enable students to change the density of traffic entering the simulation.

Non-functional Requirements

R-V The system shall be easy to use.
R-VI The system shall motivate the students to explore the simulation.
R-VII The system design shall be elegant.
R-VIII The system design shall be clear.

Further related studies originate from approaches concerned with design deci-
sion documentation or requirements traceability using decision knowledge. Most
approaches on design decision documentation (cf. [14,23,24]) only present small
examples of how they can be applied. So, they do not offer realistic and complex
data in their case studies. Some approaches on requirements traceability, for
instance as described by Cleland-Huang at el. [4], use decisions to create trace
links between requirements and other artifacts, like design diagrams or code.
Thus, they do not represent fine-grained structures of decision knowledge for
their trace links.

Several studies have been executed based on the introduced design session
transcripts. They can be found in special issues of Design Studies in 2010 and
Software in 2012 as well as in [18]. For instance, the studies of Jackson [10]
and Shaw [20] analyze the design structures and the explored design space.
The studies of Tang et al. [21] and Baker and van der Hoek [1] investigate the
decision-making process. Mostly, the applied research method in these studies
is similar to our study, as the transcripts were analyzed by coding relevant text
parts according to given coding schemes. Only the study of Ball et al. [2] explic-
itly considers relations between requirements and decision knowledge. The given
requirements are grouped according to their level of complexity and examined
for relations to different design strategies. However, no study is investigating in
detail how particular decision knowledge elements are related to requirements.



3 Research Method

In this section, we present our research method. First, we introduce our research
questions for the study and then define the coding table for the text analysis of
the transcripts. Finally, we briefly describe the coding process.

Research Questions According to our overall goal (cf. Section 1), we aim to
investigate relations between requirements and design decisions at a fine-grained
level. Consequently, the first research question RQ1 is: Which relationships exist
between requirements and decision knowledge elements? Such fine-grained rela-
tions are likely to influence the evolution of decision knowledge structures over
time. For instance, constraints based on specific requirements might restrict so-
lution alternatives, so that new implications for the decision arise. This leads
to RQ2 : How do fine-grained knowledge structures emerge based on the given
requirements? As pointed out by Chen et al. [3], requirements with significant
influence on a system’s design often are difficult to define and tend to be vaguely
described. They report, that designers then make assumptions about the miss-
ing details. Thus, we address uncertainties about requirements in RQ3 : How
do decision knowledge elements address uncertainty about requirements? Among
other reasons, these uncertainties might impact the given requirements by trig-
gering their extension or other refinements. Therefore, we also investigate the
impact of decision knowledge elements on requirements by RQ4 : How do decision
knowledge elements impact and refine the given requirements?

Coding Table and Coding Process Based on the leaf entities and relations
in our documentation approach, we derived a coding table to identify the differ-
ent decision knowledge elements and their relations to requirements within the
transcripts. All codes are given in Table 2. A general code Context was added to
capture context knowledge, which could not be categorized in detail. As an ar-
gument may support or challenge other knowledge elements, two different codes
were created for arguments. For each identified decision knowledge element a
unique running ID and a name were created. Elements with a late position in
the transcript got a higher ID. The ID as well as the numbers of the requirements
presented in Table 1 were used to express relations. We used 41 decisions of the
design space described by Shaw [20] as a high-level structure, with 20 decisions
belonging to the Adobe transcript and 21 to the one for Amberpoint. All iden-
tified decision knowledge elements were either contained in such a decision or in
another decision knowledge element.

The first author coded both transcripts completely. The first 10% of the
data was also coded by the second author and both codings were compared. The
authors discussed any deviations and further refined the coding table and the
criteria for setting a code. Then, the first author coded the remaining data. A
coding example is given in Table 3.



Table 2. Codes for Transcript Analysis

RQ Code Description

1 DKE.concerns(R-x) Reference to a requirement; code was set according to
keywords, like “traffic lights”, “sensor” or “rate of traffic”

2 Issue / Goal Concrete open question / Abstract, more general aim

2 Alternative / Claim Solution proposal: Can be assessed by criteria / is based
on personal experience, informal knowledge

2 Context / Assumption
/ Constraint / Implica-
tion

General information / Uncertain or approximated in-
formation / Limitation or restriction / Consequence

2 pro-Argument / contra-
Argument / Assessment

Information supports / challenges / assesses another
knowledge element

2 DKE.(Decision|DKE) Element contained in decision or another element

3 Uncertain(Description) Developers explicitly express uncertain or vague infor-
mation about the given requirements

4 Impact(Description) Developers explicitly express extensions to or limita-
tions of given requirements

DKE: ID of decision knowledge element, R-x: requirement number

Table 3. Transcript Excerpt with Coding Example

Transcript Yes, so it’s got an infinite number of roads and intersections you can

lay out. ID: 6

Code RQ1 6.concerns(R-I)

Code RQ2 Assumption.(Decision “Intersections implied by road crossings”)

Code RQ3 -

Code RQ4 Impact(it’s got an infinite number of roads and intersections)

4 Results

In this section, we present the results of our coding. The percentages of all deci-
sion knowledge elements per transcript are depicted in Figure 2. In total we found
182 decision knowledge elements with 55 relations to requirements in the Adobe
transcript and 198 decision knowledge elements with 65 relations to requirements
in the Amberpoint transcript. For the Adobe transcript, higher percentages of
Issues, Claims and Implications were found than for the one of Amberpoint. In
contrast, the Amberpoint team made more Arguments explicit in their discus-
sions. Only one explicit Assessment of different alternatives was found in the
Adobe transcript. It should be noted that both teams followed different solution
approaches, as described by Shaw [20]. This difference is illustrated by the 5
decisions with the most decision knowledge elements for each team, as shown



in Table 4. Whereas the Adobe team focused on the system’s functionality and
technical architecture using a Model-View-Controller-approach, the Amberpoint
team was mostly concerned with designing the user interface and interaction be-
havior of the system.

Requirement I

12 (22%)

Requirement II

14 (25%)

Requirement II.a

2 (4%)
Requirement II.b

3 (5%)

Requirement II.c

6 (11%)

Requirement III

13 (24%)

Requirement IV

5 (9%)

Adobe Transcript: Relations to Requirements 

Issue

36 (20%)

Goal

3 (2%)

Alternative

21 (12%)

Claim

39 (21%)
Context

17 (9%)

Assumption

11 (6%)

Constraint

8 (4%)

Implication

33 (18%)

pro-Argument

10 (5%)

contra-Argument

3 (2%)

Assessment

1 (1%)

Adobe Transcript: Decision Knowledge Elements

Total: 182

Total: 55

Requirement I

15 (23%)

Requirement II

14 (22%)

Requirement II.a

4 (6%)
Requirement II.c

6 (9%)

Requirement III

15 (23%)

Requirement IV

5 (8%)

Requirement V

6 (9%)

Amberpoint Transcript: Relations to Requirements

Issue

35 (18%)

Goal

2 (1%)

Alternative

22 (11%)

Claim

30 (15%)

Context

28 (14%)

Assumption

18 (9%)

Constraint

14 (7%)

Implication

23 (12%)

pro-Argument

15 (8%)

contra-Argument

11 (5%)

Amberpoint Transcript: Decision Knowledge Elements

Total: 65

Total: 198

Fig. 2. Percentages of Decision Knowledge Elements for each Transcript

Table 4. Decisions with Most Decision Knowledge Elements (DKE) for each Transcript

Adobe Decisions #DKE Amberpoint Decisions #DKE

Set of objects – traversed by a
controller at each clock tick

25 Discrete cars – Cars with state,
route, destination

26

Intersections – Have roads (with
lights and cars)

22 Intersections – Signals and sensors
in approaches

23

High-level organization – Net-
work

17 Connection of roads to intersec-
tions – Lights and sensors in ap-
proaches

20

Place in hierarchy – Traffic sig-
nals belong to roads

16 Traffic Model – Master traffic ob-
ject, discrete cars

20

Layout of visual map – Intersec-
tions implied by road crossings

12 System Concept – User Interface 16

Results for RQ1: Relations between Requirements and Decision Know-
ledge Elements The detailed percentages of relations to requirements for each
kind of decision knowledge element are presented in Figure 3.

The Adobe team addressed all functional requirements in their decision know-
ledge, but they did not explicitly refer to any non-functional requirement. In con-
trast, for the Amberpoint transcript no relations to requirement II.b “Only 4-way



Requirement I

12 (22%)

Requirement II

14 (25%)

Requirement II.a

2 (4%)
Requirement II.b

3 (5%)

Requirement II.c

6 (11%)

Requirement III

13 (24%)

Requirement IV

5 (9%)

Adobe Transcript: Relations to Requirements 

Issue

36 (20%)

Goal

3 (2%)

Alternative

21 (12%)

Claim

39 (21%)
Context

17 (9%)

Assumption

11 (6%)

Constraint

8 (4%)

Implication

33 (18%)

pro-Argument

10 (5%)

contra-Argument

3 (2%)

Assessment

1 (1%)

Adobe Transcript: Decision Knowledge Elements

Total: 182

Total: 55

Requirement I

15 (23%)

Requirement II

14 (22%)

Requirement II.a

4 (6%)
Requirement II.c

6 (9%)

Requirement III

15 (23%)

Requirement IV

5 (8%)

Requirement V

6 (9%)

Amberpoint Transcript: Relations to Requirements

Issue

35 (18%)

Goal

2 (1%)

Alternative

22 (11%)

Claim

30 (15%)

Context

28 (14%)

Assumption

18 (9%)

Constraint

14 (7%)

Implication

23 (12%)

pro-Argument

15 (8%)

contra-Argument

11 (5%)

Amberpoint Transcript: Decision Knowledge Elements

Total: 65

Total: 198

Fig. 3. Percentages of Relations to Requirements for each Transcript

intersections” could be identified, but the non-functional requirement V “Usabil-
ity” was addressed. However, a pattern for both teams is that non-functional
requirements were mostly not referenced in the investigated design decisions.
When comparing both teams, several percentages for relations to requirements
and decision knowledge elements are similar. Looking at the requirements ad-
dressed by the teams and the relationships of these requirements to decision
elements, we found differences between the teams. This is depicted in Figure 4.

0

2

4

6

8

10

12

Adobe Transcript: Relation Details

Requirement I Requirement II Requirement II.a Requirement II.b

Requirement II.c Requirement III Requirement IV

0

2

4

6

8

10

12

Amberpoint Transcript: Relation Details

Requirement I Requirement II Requirement II.a Requirement II.c

Requirement III Requirement IV Requirement V

Fig. 4. Detailed Percentages of Relations to Requirements by Decision Knowledge El-
ement

For instance, for the Adobe team we found three references of requirement II
within Alternatives, but no Assumptions related to requirement I. In contrast,
the Amberpoint transcript contained no references to requirement II for Alterna-
tives, but several Assumptions were related to requirement I. Looking at the the
relationships to requirements altogether, we found for both teams that require-
ments were mostly related to Issues, Alternatives and Claims. In contrast, links



between requirements and context elements seem to be specific for each team.
Looking at the relationships aggregated for entire decisions, we also observed
differences, as shown in Table 5. For instance, many references to requirements
were found for the decision on the place for traffic lights in the system’s hierarchy
made by the Adobe team. However, the Amberpoint team did not consider any
requirement explicitly for the same decision. In general, this indicates that ref-
erences on requirements in the investigated design decisions depend not only on
the actual content of the requirements, but also on the preferences and priorities
of the team.

Table 5. Major Deviations for the Number of Relations to Requirements per Decision

Decision #Relations
for Adobe

#Relations
for Amberpoint

∆

Road System –
Connection of roads to intersections

3 13 10

Traffic Lights – Place in hierarchy 10 0 10

Simulator 7 0 7

Road System – Intersections 3 9 6

System Concept 2 8 6

Results for RQ2: Emerged Decision Knowledge Structures We identi-
fied complex structures of decision knowledge elements in the transcripts, which
emerged based on the given requirements. During the design discussions, state-
ments of the developers jumped between multiple decisions. However, for se-
quences of decision knowledge elements they typically addressed the same re-
quirement. Different examples of resulting knowledge structures are depicted in
Figure 5. In most decisions problem (Issues, Goals) or solution elements (Al-
ternatives, Claims) initially addressed requirements. Over time, they were ac-
companied by context knowledge. This reflects the further exploration of the
decision and its environment by the designers. An example is shown in part (a)
of Figure 5. More complex knowledge structures addressed multiple requirements
within one decision due to context elements related to different requirements.
A potential cause could be that designers aim to satisfy multiple requirements
within one decision. Then, they start to make trade-offs between alternatives
by adapting and extending the alternatives over time. An example is given as
part (b) in Figure 5. Typically, Solutions were not formally assessed according
to given criteria, as only one Assessment was found. Instead, one or more parti-
cular Arguments were stated by the designers to support or challenge a Solution.
For the Amberpoint transcript, several of these Arguments also were explicitly
related to requirements. A reason could be that often designers prefer sufficient
solutions over optimal to reduce their effort [25]. Then, only the most important



arguments are considered. An example for this structure is depicted as part (c)
in Figure 5.

[Decision]

Independent 

Intersections

[Alternative]

Rules for each 

intersection

Requirement I

concerns

[Issue]

How many 

light states?

[Claim]

Introduce 

yellow light

[Issue]

How to empty 

intersections?

[Implication]

Traffic jams 

possible

contains

concerns

contains

(a) Issue and Alternative Address 

One Requirement

(b) Different Elements Address

Multiple Requirements

(c) Argument Addresses 

Requirement

[Decision]

Lights and 

Sensors

[Constraint]

Timing for 

two directions

[Claim]

Set overlaps 

separately
contains

contains

[pro-Arg.]

Avoid crash 

combinations
contains

Requirement II

Requirement II.c

[Claim]

Set speed per 

road

[Assumption]

Sensor related 

to car speed

contains

concerns

concerns

[Decision]

Layout determines 

road length

[Claim]

Always show 

distance

[contra-Arg.]

Bad visual 

scalability

contains

[contra-Arg.]

Only 6 inter- 

sections needed

Requirement I

contains

contains

concerns63

64

52

49

21

73

148

109

74

71 140

141

142

Fig. 5. Excerpts of Emerged Knowledge Structures (with Element IDs in Circles)

Results for RQ3: Uncertainty about Requirements in Decision Know-
ledge Elements In total, we identified 21 different uncertainties by the code
Uncertain. We sorted them according to the affected category of requirements.
The teams explicitly stated these uncertainties in their decision knowledge ele-
ments. An overview is given in Table 6.

Table 6. Uncertainty about the Given Requirements in Decision Knowledge Elements

Category Example of Uncertainty

Interaction
– Simulation

“[...] I don’t know if there’d be two modes: an editing mode
and a simulation mode.” [Assumption]

Interaction
– Traffic Density

“[...] I’d go back to the customer and try and figure out, how
did they collect this [traffic] data [...]” [Assumption]

System – Intersections “But we are assuming straight lines.” [Assumption]

System – Lights “The left-hand turns are protected, but does it have only left-
hand [turns]?” [Issue]

System – Sensors “[...] If you have [a] sensor, what does that mean?” [Issue]

System – Simulation “How do you assess the success of the timing?” [Issue]

Typically, uncertainties were addressed in Assumptions and Issues. We iden-
tified multiple uncertainties the designers had about the user’s interaction with



the simulation system. In addition, both teams discussed uncertainties about
the capabilities and limitations of different entities implied by the requirements,
such as intersections, lights and sensors. Moreover, the Amberpoint team ex-
plicitly stated several uncertainties about how parts of the simulation function-
ality should be addressed in their decisions. Overall, in the Amberpoint tran-
script we identified 15 explicitly addressed uncertainties about requirements in
decision knowledge elements and 6 in the Adobe transcript.

Results for RQ4: Impact of Decision Knowledge Elements on Require-
ments In total, we identified 15 decision knowledge elements to impact the given
requirements by the code Impact. Four elements were found in the Adobe tran-
script and 11 were contained in the Amberpoint transcript. An overview is given
in Table 7.

Table 7. Impact of Decision Knowledge Elements on the Given Requirements

Category Example of Impact

Interaction – Simulation
Configuration

“[...] where you put these roads determines the maximum
number of cars [...]” [Implication]

Interaction
– Simulation Usage

“[...] it could be you can draw while you’re simulating.”
[Claim]

Interaction
– User Groups

“[...] the end users seem to be the students, and the profes-
sor.” [Assumption]

System
– Intersection Structure

“[...] it’s got an infinite number of roads and intersections
[...]” [Assumption]

System
– Simulation Analysis

“[...] then you have an analytics piece looking in and assess-
ing questions [...]” [Issue]

Eight out of 15 decision knowledge elements impacting the requirements were
context elements. This indicates, that information from the decision context
could be a trigger to refine and adapt the given requirements. Adaptions to re-
quirements were made either by extension or restriction. Both teams discussed
extensions to the given requirements in decision knowledge elements of different
kinds. For instance, the Amberpoint team explicitly addressed professors as a
potential user group for the system within an Assumption. However, this was
not requested by the requirements in the prompt. In contrast, restrictions to
the given requirements typically were expressed in Solution and Implication el-
ements. For instance, the Adobe team reasoned that the road layout determines
the maximum number of cars possible for the roads. This describes a potential
limit of requirement IV, which requests the designers to let the users control
the traffic density without limitations resulting from the physical capacity of the
road.



5 Discussion

In the following paragraphs, the presented results are discussed with respect the
given research questions. In addition, we describe how we have addressed poten-
tial threats to validity for our study. Our documentation approach for decision
knowledge enables to uncover knowledge structures in given design decisions. The
discovered differences between both transcripts were not expected. It should be
noted that our study is not representative, as we have investigated the transcripts
of two specific design sessions only. However, we gathered valuable insights that
should be further investigated in replicated and large-scale studies.

Summary of Results for Our Research Questions The results for our re-
search questions show a diverse picture of the relations between requirements and
decision knowledge for the two given design session transcripts. On the one hand,
for both teams many similar percentages of requirement relations and decision
knowledge elements in total were found. Both teams mainly focused on the given
functional requirements in their design decisions. Also the decision knowledge
structures showed similarities, and both teams explicitly considered uncertain-
ties and refinements of requirements in their decision knowledge elements. On
the other hand, relations between requirements and particular decision as well
as kinds of decision knowledge elements strongly differ. In addition, the teams
chose different solution approaches within their design and expressed different
amounts of requirement uncertainties and impacts in their decision knowledge
elements. They also stated these uncertainties and impacts in different kinds of
knowledge elements. Overall, the coarse-grained decision knowledge structures
and relations to requirements appear to be similar for both teams, whereas the
more fine-grained decision knowledge elements with their particular relation to
requirements deviate.

Recommendations Derived from the Results Our findings show that for
the investigated design discussions many relations were found between the given
functional requirements and decision knowledge elements.

Our study also confirms the well-known fact that designers should more ex-
plicitly consider the non-functional requirements for their design within their
decisions, as non-functional requirements were mostly not related to decision
knowledge elements. In addition, we found relations to requirements to depend
more on the preferences and priorities of the team, than on the actual content of
the requirements. These two insights represent patterns for decision knowledge
structures, which are likely to decrease the quality of design decisions. Therefore,
these patterns should be avoided by designers.

Moreover, relations between requirements and decision knowledge elements
should be made explicit, so that both requirements engineers and designers can
assess the importance of particular requirements for the design. For instance,
relations to requirements in problem and solution elements might indicate the
significance of those requirements for the design outcomes. This would be in line



with the characteristics described by Chen et al. [3] for architecturally signifi-
cant requirements. Thus, designers could use these relations to recognize archi-
tecturally significant requirements more easily.

Next, requirements engineers would benefit if designers clearly stated how
they want to address uncertainties about requirements. Our findings show that
different kinds of decision knowledge elements, like Assumptions or Issues, were
expressed due to such uncertainties. If designers explicitly noted these uncer-
tainties and marked them as a prerequisite for a decision, valuable feedback for
the requirements engineering process could be derived. For instance, such uncer-
tainties and their impact on the design could be discussed with stakeholders to
avoid a misalignment between requirements and design.

Moreover, other approaches could be extended with our insights. Goal mod-
eling techniques, like i* or GQM, are concerned with the exploration of different
alternatives for implementing given requirements [12]. These approaches could
be extended to explicitly cover decisions with their relations to requirements and
design artifacts. For instance, description templates for goals could be extended
with a decision section, representing design decisions made to achieve a goal.

Overall, we advocate to integrate developers more closely into the require-
ments engineering process. Requirements engineers and developers should enter
a dialogue, which could be guided by documented decisions. Then, follow-up
questions on requirements by developers during the implementation can be ad-
dressed by requirements engineers.

Insights for Our Documentation Approach From the results for RQ1
and RQ2 we conclude that our documentation approach for decision knowl-
edge proved to be capable of capturing decision knowledge structures and their
relations to requirements in a comprehensive and fine-grained way. In addition,
the results for RQ3 and RQ4 indicate that our documentation approach helps to
identify the mutual impact of requirements and design on each other. However,
such detailed documentation is not realistic for all design decisions under real-
world settings due to the required analysis effort and the differing importance
of decisions. Thus, it is important to support developers, so that they can doc-
ument relevant decisions with less effort. We propose to support requirements
engineers and designers by semi-automatically documenting specific decisions for
given requirements, such as decisions concerned with security [6]. In addition,
developers could be supported by code annotations for decision knowledge to
integrate decision documentation with implementation [7].

Threats to Validity According to Runeson et al. [19], we discuss four different
types of threats to validity for our study.

Internal validity is concerned with the correlation between the investigated
factors and other factors [19]. First, the decision knowledge expressed by the de-
signers might have been influenced by missing further instructions on documen-
tation or design reasoning. Thus, the designers might have worked less structured
and did not articulate all decision-related thoughts. However, this corresponds
to work conditions in practice. If the designers had been asked to apply specific



methods or structured processes, our results for the design decisions would de-
pend on those methods or processes. Second, relations to requirements might
have been impacted by the rather short design prompt. This might have caused
additional uncertainties, which were not related to the content of a requirement,
but to its description in the prompt. We addressed this threat by deriving core
keywords for the content of each requirement, and used these keywords for coding
relations to requirements.

External validity is concerned with the degree to which the results of our
study can be generalized [19]. We only investigated transcripts of two design
sessions. Therefore, our findings depend on the designers of the two investigated
teams and might not be generalized for or comparable to other teams. We could
have included the third transcript of the UCI design workshop in our analy-
sis, but this would have resulted in more threats to internal validity due to
the deviations in the session’s settings. In addition, the involved designers were
professionals from industry and had key roles in their respective companies. In
consequence, the investigated data and our results are likely to represent typical
design sessions and their decision knowledge.

Construct validity is concerned with any gaps between intended and actual
observations of the researchers [19]. Our coding table could have identified some-
thing else than decision knowledge elements. We mitigated this threat by testing
and refining the codes in previous coding experiments. Also the fit with regard
to the decisions identified by Shaw [20] was very good. With our coding, we
have covered 18 out of 20 decisions for the Adobe transcript, and 20 out of 21
decisions for the Amberpoint transcript. In addition, in another project we have
investigated comments in issue reports within the Firefox project for decision-
related knowledge. There, we applied the coding table presented in this paper
successfully. As the transcripts of design discussions and discussions within is-
sue comments are similar in structure and content, we reached a good fit of
our documentation approach with the contents given in the transcripts. More-
over, our documentation approach is based on other fundamental approaches for
documenting decision knowledge, as described in [8].

Reliability validity is concerned with the degree to which data and analyses
of a study are dependent on specific researchers [19]. Only one coder coded all
data from the transcripts, so that the codes set by this coder might not be
reliable. We addressed this threat with checks and code alignments, as a second
coder also coded data samples from the transcripts. Small parts of the design
discussions were inaudible in the videos and, therefore, were marked and left out
in the transcripts. Thus, relevant decision knowledge might have been missed in
our analysis. We mitigated this threat by checking the surrounding text of any
inaudible passage for hints on the missing content.

6 Conclusion and Future Work

In this paper, we have presented a study on discussion transcripts of two design
sessions with professional software designers. We have investigated the tran-



scripts for any contained decision knowledge and its relations to the given re-
quirements. Therefore, we have coded the transcript texts according to a defined
coding scheme. Designers addressed the given functional requirements in their
design decisions, so that complex structures of decision knowledge emerged.
Moreover, decision knowledge elements also contained uncertainty about the
given requirements and impacted them with extensions or restrictions. This
shows the mutual impact of requirements and decision knowledge elements on
each other. It also points out that designers might benefit from making relations
between requirements and decision knowledge elements explicit. Then, these
knowledge elements could provide valuable feedback for the requirements engi-
neering process and help to clarify and further improve the requirements.

As future work, it should be further investigated how designers can be sup-
ported in making the most important decision knowledge elements explicit. This
requires research in two directions. First, the current study should be repeated
in larger scale. Additional design sessions could be analyzed to further refine our
findings. Second, the results of this study could be used to improve the tool sup-
port for our decision documentation approach. For instance, the tool for code
annotations could ask developers for relations to and uncertainties about the
requirements when they are documenting decision knowledge elements.

Acknowledgment

This work was partially supported by the DFG (German Research Foundation)
under the Priority Programme SPP1593: Design For Future — Managed Soft-
ware Evolution. Results described in this paper are based upon videos and tran-
scripts initially distributed for the 2010 international workshop “Studying Pro-
fessional Software Design”, as partially supported by NSF grant CCF-0845840.

References

1. Baker, A., van der Hoek, A.: Ideas, subjects, and cycles as lenses for understanding
the software design process. Design Studies 31(6), 590–613 (2010)

2. Ball, L.J., Onarheim, B., Christensen, B.T.: Design requirements, epistemic un-
certainty and solution development strategies in software design. Design Studies
31(6), 567–589 (2010)

3. Chen, L., Ali Babar, M., Nuseibeh, B.: Characterizing Architecturally Significant
Requirements. Software 30(2), 38–45 (2013)

4. Cleland-Huang, J., Mirakhorli, M., Czauderna, A., Wieloch, M.: Decision-Centric
Traceability of Architectural Concerns. In: International Workshop on Traceability
in Emerging Forms of Software Engineering. pp. 5 – 11. IEEE (2013)

5. Falessi, D., Cantone, G., Kazman, R., Kruchten, P.: Decision-making techniques
for software architecture design. ACM Computing Surveys 43(4), 1–28 (2011)

6. Hesse, T.M., Gaertner, S., Roehm, T., Paech, B., Schneider, K., Bruegge, B.: Semi-
automatic Security Requirements Engineering and Evolution using Decision Doc-
umentation, Heuristics, and User Monitoring. In: First International Workshop on
Evolving Security and Privacy Requirements Engineering (ESPRE) at RE2014.
pp. 1–6. IEEE (2014)



7. Hesse, T.M., Kuehlwein, A., Paech, B., Roehm, T., Bruegge, B.: Documenting Im-
plementation Decisions with Code Annotations. In: 27th International Conference
on Software Engineering and Knowledge Engineering. pp. 152–157. KSI Research
Inc. (2015)

8. Hesse, T.M., Paech, B.: Supporting the Collaborative Development of Require-
ments and Architecture Documentation. In: 3rd Internatioal Workshop on the
Twin Peaks of Requirements and Architecture (TwinPeaks) at RE2013. pp. 22
– 26. IEEE (2013)

9. van der Hoek, A., Petre, M., Baker, A.: Workshop “Studying Professional Soft-
ware Design” at University of California, Irvine (2010), http://www.ics.uci.edu/
design-workshop/, URL retrieved in 10-2015

10. Jackson, M.: Representing structure in a software system design. Design Studies
31(6), 545–566 (2010)

11. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design
Decisions. In: 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA’05). pp. 109–120. IEEE (2005)

12. Kavakli, E., Loucopoulos, P.: Goal Modeling in Requirements Engineering: Analy-
sis and Critique of Current Methods. Information Modeling Methods and Method-
ologies: Advanced Topics of Database Research pp. 102–124 (2005)

13. Ko, A.J., Chilana, P.K.: Design, discussion, and dissent in open bug reports. In:
Proceedings of the 2011 iConference. pp. 106–113 (2011)

14. Kruchten, P., Lago, P., Vliet, H.V.: Building Up and Reasoning About Architec-
tural Knowledge. In: Hofmeister, C., Crnkovic, I., Reussner, R. (eds.) Quality of
Software Architectures, Lecture Notes in Computer Science, vol. 4214, pp. 43–58.
Springer (2006)

15. Ngo, T., Ruhe, G.: Decision Support in Requirements Engineering. In: Engineering
and Managing Software Requirements, pp. 267–286. Springer (2005)

16. Nuseibeh, B.: Weaving Together Requirements and Architectures. Computer 34(3),
115–119 (2001)

17. Paech, B., Delater, A., Hesse, T.M.: Integrating Project and System Knowledge
Management. In: Ruhe, G., Wohlin, C. (eds.) Software Project Management in a
Changing World, pp. 157–192. Springer (2014)

18. Petre, M., van der Hoek, A.: Software Designers in Action: A Human-Centric Look
at Design Work. CRC Press (2013)

19. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering. Guidelines and Examples. Wiley (2012)

20. Shaw, M.: The role of design spaces. Software 29(1), 46–50 (2012)
21. Tang, A., Aleti, A., Burge, J., van Vliet, H.: What makes software design effective?

Design Studies 31(6), 614–640 (2010)
22. Tang, A., Babar, M.A., Gorton, I., Han, J.: A Survey of Architecture Design Ra-

tionale. Journal of Systems and Software 79(12), 1792–1804 (2006)
23. Tang, A., Jin, Y., Han, J.: A rationale-based architecture model for design trace-

ability and reasoning. Journal of Systems and Software 80(6), 918–934 (2007)
24. Tyree, J., Akerman, A.: Architecture Decisions: Demystifying Architecture. Soft-

ware 22(2), 19–27 (2005)
25. Zannier, C., Chiasson, M., Maurer, F.: A model of design decision making based on

empirical results of interviews with software designers. Information and Software
Technology 49(6), 637–653 (2007)

http://www.ics.uci.edu/design-workshop/
http://www.ics.uci.edu/design-workshop/

	Documenting Relations between Requirements and Design Decisions: A Case Study on Design Session Transcripts

