Using Interaction Data for Continuous Creation
of Trace Links between Source Code and
Requirements in Issue Tracking Systems

Paul Hibner and Barbara Paech

Institute for Computer Science, Heidelberg University,
Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
{huebner, paech}@informatik.uni-heidelberg.de

Abstract. [Context and Motivation] Information retrieval (IR) trace
link creation approaches have insufficient precision and do not perform
well on unstructured data which is typical in issue tracker systems (ITS).
[Question/ problem] We are interested in understanding how inter-
action tracking on artifacts can help to improve precision and recall of
trace links between requirements specified unstructured in an ITS and
source code. [Principal ideas/ results] We performed a study with
open source project data in which artifact interactions while working on
requirements specified in an ITS have been recorded. [Contribution]
The results of our study show that precision of interaction-based links
is 100% and recall is 93% for the first and 80% for the second evaluated
data set relative to IR~created links. Along with the study we developed
an approach based on standard tools to automatically create trace links
using interactions which also takes into account source code structure.
The approach and the study show that trace links creation in practice
can be supported with little extra effort for the developers.

Keywords: traceability, continuous, interaction, requirement, source code

1 Introduction

Existing trace link creation approaches are typically based on information re-
trieval (IR) and on structured requirements like use cases or user stories. Also,
they often focus on links between requirements [5]. It is known that precision
of IR created links is often not satisfying [14] even in the case of structured re-
quirements. Thus, handling of false positive IR created trace links requires extra
effort in practice which is even a research subject on its own [15, 29, 12].

Still, the research focus in RE is to improve recall, since security critical
domains like the aeronautics and automotive industry require complete link sets
and thus accept the effort to remove many false positives [6]. These links are
created periodically, when needed for certification to justify the safe operation
of a system.

However, in many companies requirements are managed in issue tracking
systems [22]. For open source projects ITS are even the de facto standard for

all requirements management activities [26]. In ITS the requirements text is un-
structured, since ITS are used for many purposes, e.g. development task and
bug tracking in addition to requirement specification. This impairs the results
of IR-based trace link creation approaches [27]. Furthermore, for many develop-
ment activities it is helpful to consider links between requirements and source
code during development, e.g. in maintenance tasks and for program comparison
[23]. If these links are created continuously, that means after each completion
of an issue, they can be used continuously during the development. In these
cases, large effort for handling false positives and thus, bad precision is not de-
sirable. Therefore, a trace link creation approach for links between unstructured
requirements and code is needed with good precision and recall. It is the goal
of our research to develop such an approach [16] based on interaction logs and
code relations. Interaction logs capture the source code artifacts touched while a
developer works on an issue. We already provided a trace link creation approach
based on version control system (VCS) change logs [11]. Interaction logs pro-
vide more fine-grained interaction data than VCS change logs. Code relations
such as references between classes provide additional information. In this paper
we explore the potential of interaction logs and code relations aiming at 100%
precision.

To facilitate the usage of such fine-grained interaction logs we provide a trace
link creation approach which we call interaction link (IL). We study the precision
and recall of our approach in comparison with IR created trace links. The overall
research question which we answer with our study is

Is there a difference between the application of IR and IL based
trace link creation regarding precision and relative recall?

Since it is not possible to get a project from industry or open source which
provides both, fine-grained interaction logs and a gold standard for trace links,
we do not look at precision and recall of IR and IL wrt. a gold standard. Instead
we directly evaluate the precision of IL and IR. Furthermore, we compute the
relative recall of IR and IL. Relative recall compares the correct links found by
one approach with the correct links found by both trace link creation approaches
[13]. This kind of recall is well established in domains in which a gold standard
creation and thus absolute recall calculation is not possible, e.g. in the field of
search engine comparison [20].

For our study we use the interaction log data, requirements and source code
from the Mylyn' development project. This interaction log data has also been
used by others for different research purposes [21, 18].

The results of the study show that IL has 100% precision and is better than
the precision of IR. In addition we show that IL with code relations has also bet-
ter relative recall than IR. The remainder of this paper is structured as follows.
Section 2 gives a short introduction into IR, the creation of trace links, ITS as
data source for requirements, the evaluation of trace link creation approaches

! nttp://www.eclipse.org/mylyn

http://www.eclipse.org/mylyn

and interaction tracking. In Section 3 we discuss related work. Section 4 intro-
duces our trace link creation approach. Section 5 states the research questions
which are derived from the general research question introduced above and in-
troduces the experimental design along with the selection of data sets for our
study. In Section 6 we present the results of the study and answer the research
questions including a discussion. Section 7 discusses the threats to validity of
the study. Section 8 concludes the paper and discusses future work.

2 Background

This section introduces the background of our approach and the study.

2.1 IR and the Creation of Trace Links

IR is the computer based search for information within a set of artifacts. IR
algorithms are used to execute search queries aiming to retrieve all relevant ar-
tifacts while minimizing the non-relevant artifacts [4]. When using IR for trace
link creation the query concerns textual similarity between two artifacts. Tex-
tual similarity is determined by calculating the cosine similarity and defining
a threshold for the calculated cosine similarity. Cosine similarity measures the
similarity between the two term vectors representing the artifacts based on the
cosine of the angle between the term vectors by a numerical value between 0 and
1 [5]. 0 indicates no similarity between two artifacts and 1 that two artifacts are
identical. In order to define if two artifacts are related with each other and should
be linked a threshold value for the cosine similarity is used [7]. Thus, varying
this threshold value also varies the number of created trace link candidates.

In our study the artifacts are requirements issues and implementation arti-
facts. There are different IR algorithms. The most common IR algorithms used
for trace link creation are vector space model (VSM) and latent semantic index-
ing (LSI) [5, 14]. Thus, we used these two IR algorithms for comparison with our
new trace link creation approach. The difference between VSM and LSI is that
VSM uses a more strict term comparison than LSI. Whereas VSM measures the
similarity based on terms, LSI measures the similarity based on concepts, which
are high level abstractions of the used terms and can been seen as the topics of
the artifacts [4]. Thus LSI enables similarity matches between artifacts which do
not contain the exactly same terms.

The preprocessing of artifact is essential for the application of an IR al-
gorithm. Typically, preprocessing consist of several steps. Some of them are
fundamental and some are specific to the used data sources. In our study we
applied the following common preprocessing steps [24, 4, 5]. First we used stop
word removal to remove common words which have no impact on the similar-
ity of artifacts (e.g. for, the, a, etc.). Then we performed stemming with the
Porter Stemmer algorithm. And we removed punctuation characters. As a spe-
cific step we performed camel case identifier splitting (e.g. BugzillaTask becomes
Bugzilla Task). Since camel case notation is common in java source code while

requirements use separate words [9, 1], this splitting can significantly improve
the similarity of source code and requirements artifacts.

2.2 ITS as Data Source for Requirements

ITS are a common platform for information exchange in software development
projects [22]. Often ITS are used as a central information data source and thus
also for the definition and management of requirements. Requirements are de-
scribed as issues which at least consist of a title and a description. A basic feature
of I'TS is the discussion functionality of issues so that users can create comments
for issues. These comments may contain requirement relevant content, e.g. a
feature description.

2.3 Evaluation of IR created Trace Links

Approaches on trace link creation, e.g. as described in the overview papers [5, 14],
by default use a gold standard to evaluate and compare the approach. Such a
gold standard consists of the set of all correct trace links for a given set of arti-
facts. The creation of such a gold standard is labor intensive as it is necessary
to manually check if trace links exist for each pair of artifacts. Therefore many
approaches use data sets which are specifically created for the purpose of evalu-
ation, e.g. within a student project [10]. We also plan to evaluate our approach
in a student project where we can create the gold standard in parallel to the
project. As a first step we wanted to explore the usefulness of interaction logs
on existing data.

There are only few realistic data sets with interaction logs (cf. next Subsection
2.4). The creation of a complete gold standard for such a project is not feasible.
Therefore we only evaluate the precision of the links found by IR or IL and we
compute the relative recall.

Precision (P) is the amount of correct links (true positives, TP) within all
links found by an approach, i.e. the sum of TP and not correct (false positive,
FP) links. Recall (R) is the amount of TP links found by an approach within all
existing correct links, i.e. the sum of TP and false negative (FN) links:

TP TP
P_TP+FP R_TP+FN

According to [15] values for P and R of IR for structured requirements can be
categorized in three quality levels. Acceptable values for R are between 60 and
69% and for P between 20 and 29%. Good values for R are between 70 and
79% and for P between 30 and 49% and excellent values for R are between 80
and 100% and for P between 50 and 100%. Merten et al. [27] reported varying
results for using IR on unstructured requirements data from ITS, i.e. they tried
to achieve a 100% for R with different IR algorithms and different preprocessing
steps. Then their best values for P were up to 11%. Considering other approaches
for link creation between code and requirements using open source projects as

data source Ali et al. also used VSM for trace link creation [2] and achieved
similar but also very project specific results for P (between 15 and 77%). De
Lucia et al. [10] report values of 90% for R and 25% for P for link creation
between structured requirements and source code by using LSI in combination
with categorization.

To evaluate our trace link creation approach we use the relative recall measure
[13] as we do not have a gold standard. Relative recall is used if it is not possible
to get all correct values for a data set due to the size of the data set. It is a well-
established standard measure in the domain of web search engine performance
and quality measuring [20]. Relative recall uses all correct links available as
comparison measure for calculating the recall of a single approach. Therefore
the relative recall for IL (RR;y) and for IR (RR;r) are defined as:

RR - — TPrr RR. — TP
Ir= TPrr+TPrp L= TPrr, +TPrr

2.4 Interaction Logs and Code Structure

Interaction logs are all developer interactions with artifacts managed by an IDE.
Common IDEs like Eclipse? provide the functionality to record these interactions
[28]. For the development of our approach we used interactions recorded with the
Eclipse Mylyn extension during the open source development of Mylyn. Mylyn
logs edit, select and other events after a developer has selected an issue from an
associated ITS and activated the recording. Interactions for an issue are recorded
until the developer finishes working on the issue, e.g. by closing the issue, by
switching to another issue or by explicitly stopping the recording of interactions.
For the development of Mylyn the developers use Mylyn together with the ITS
Bugzilla? which is also used for requirements capture. The Mylyn developers
are encouraged to trigger recording when they work on the implementation of a
requirement. These interaction logs are accessible as attachments of the issues
in the Mylyn Bugzilla ITS.

Interaction logs can have different event types e.g. edit and select events
triggered by a developer and system generated events like propagation, command
and preference. An interaction log entry comprises the event type E touching
the implementation artifact I while working on requirement A. Based on such an
interaction log entry a trace links can be created between A and I. Interaction
logs enable the link creation on class (file), method and attribute granularity
level, i.e. all parts of the source code abstract syntax tree (AST) model.

We use the term code structure to denote the following relations between
two classes in the Mylyn name space: a class implements an interface, a class
extends another class or a class references other classes in its attributes. These
relations can be used for link creation as follows: If a trace link (A — X) from
requirement A to class X has been created, for each class Y which is related

2 http://www.eclipse.org
3 https://bugs.eclipse.org/bugs/describecomponents.cgi?product=Mylyn

http://www.eclipse.org
https://bugs.eclipse.org/bugs/describecomponents.cgi?product=Mylyn

with X also a trace link to the requirement A is created (A — Y'). These related
classes are likely relevant to the implementation of A. Clearly, this can be applied
transitively and in consequence it is theoretically possible that from a single class
all existing classes are linked. Therefore we explored different nesting levels in
our study.

3 Related Work

In the following we first discuss related work on IR-based trace link creation ap-
proaches for structured and unstructured requirements and for considering code
structure. Then we discuss related work on the usage of interaction logs. Borg
et al. [5] present a current overview of IR based trace link creation approaches
based on a systematic literature review. 46 of the 79 analyzed approaches deal
with trace link creation between source code and requirements. In contrast to
our study most of the approaches use laboratory settings (i.e. student projects)
instead of real (open source) projects. We used the assessment of IR algorithms
presented by Borg to select VSM and LSI as comparison algorithms for our ap-
proach. De Lucia et al. [10] is an example for such a study in which the usage
of LSI and VSM are compared. As a result this study reports about possible
improvements when using LSI. Our study setup is similar to theirs, since we
share the research goal of improving trace link creation. McMillan et al. [25] use
source code structure information to improve results of trace links created by
VSM. We adapt the use of source code structure in our approach. Instead of
using the structure only for verification of already created links by IR we use
the source code structure to create additional new links.

Merten et al. [26] have evaluated the application of IR-based trace link cre-
ation algorithms in I'TS and thus on unstructured requirements data. One of their
findings was that preprocessing of the unstructured data is essential for reason-
able application of IR. Another finding was that it is not possible to achieve
good results for both, precision and recall. In our study we create links between
(requirements) issues and source code instead of links between issues.

To identify related work using interaction data we completely explored the
Mining Software Repositories conference proceedings, but did not find any ap-
proaches using interactions for trace link creation. In consequence we also partly
searched in the ICSE and RE proceedings and identified the following relevant
publications.

Kersten et al. [17] describe the initial version of Mylyn called Mylar. The basic
idea of Mylyn is to reduce the information overload in an IDE by exploiting the
interactions of a developer. To do so Mylyn provides the functionality to associate
interactions to issues from an ITS within the IDE. With our approach we use
these interaction logs available in Mylyn by filtering and aggregating the logs on
different levels of granularity and directly providing links in the ITS to the code.

Konopka et al. [19] show that interaction logs are helpful to derive links be-
tween development artifacts. They also use Mylyn generated interaction logs and
data from the Mylyn project for development and evaluation of their approach.

We adopt interaction based link creation for our trace link creation approach,
but in contrast to their focus on code relations we derive links between unstruc-
tured requirements and source code. Omoronyia et al. [30] capture interactions
between source code and structured requirements specified as use cases to infer
trace links based on statistical evaluation of the interactions. We adopt their
approach using select and edit events for trace link creation. In contrast to our
goal their tool support focuses on visualizing the trace links after a task has been
performed and not on direct availability and usage of trace links. Asuncion and
Taylor [3] describe the principle of recording interaction for trace link creation,
but do not provide a tool. In contrast to our approach their focus has been trace
link creation between structured requirements and design oriented artifacts. In
our earlier work we used VCS based changed logs, a coarse-grained form of in-
teraction logs, using work items as intermediate elements to create trace links
between source code and requirements [11]. Our actual approach improves this
earlier work. With more fine grained interactions more detailed trace links can
be created.

4 Interaction Log Trace Link Creation Approach

e Ini‘e [(1) Trace Link Creation Traced
ion
rement iCO o @ Links
1

From ITq Capture of Interaction
Event 4 Granu-l
Types larity
Level

Events during the
Implementation of
Interaction Interaction Log
Log filtering aggregation
Python NLTK

selected Requirement
D Data Approach Step Data usage — Sequence Flow
Fig. 1: IL Approach Overview

(2) Trace Link Creation%

Source
Code
Struct

AN
| Trace
Links
Source Code Structure

generation Eclipse JDT
Python NLTK

Impl 1_
Artifacts

from
VvCs

Figure 1 shows the overview of our IL approach. After the capture of the
interaction logs in Mylyn there are two steps to create links. In the first step links
are created based solely on interaction logs. In the second step the source code
structure is used to create further trace links between requirements and code. We
implemented both trace link creation steps in a Python and Java based tool. The
NLTK library? is used to create the trace links. In the second step Eclipse JDT
library® is used to create the code structure considered for trace link creation.
The used interaction logs are based on the selected requirement in the ITS and
the implementation artifacts managed within a VCS. In our approach we only
use edit and select events, since these are directly triggered by a developer and
indicate relations between the affected artifacts and the processed requirement
(filtering). Trace links are created between a requirement and all source code
artifacts touched by select or edit interaction events. We support aggregation of
links, e.g. if trace links are created to multiple methods of a class, these links are

4 http://www.nltk.org/, Python Natural Language Toolkit
5 http://www.eclipse.org/jdt/, Eclipse Java development tools

 http://www.nltk.org/
http://www.eclipse.org/jdt/

aggregated to a single link on file level. In our tool the granularity level of the
created trace links is configurable. To be comparable with IR created trace links,
which only support file granularity we configure our approach in the study to
aggregate interaction log created links to file level. Also the usage of source code
structure is configurable wrt. the nesting level of source code relations. E.g. if
there are classes A, B, C and D with the relations A -+ B — C — D and there
is a trace link, created by interaction logs, between requirement R and class A
(R — A), then the nesting level two will result in the creation of two additional
trace links R -+ B and R — C.

5 Experiment Design

PP U R R U I

, . . .
J | .
| [1' Definition of Research } L [4' Consideration of 6. Manual Evaluation of IR }

|

i ted Links using Results of
! Questions Code Structure [crea . A
| 2 IL Link Evaluation
i Y | f
|
|
|

(2 (3.
. { Selection of Data Sets }—y—v—{ IL and IR Trace Link Creation
] | |

NEREToIN

5
created Links

" Manual Evaluation of IL }

[
i
[
i
[
i E
[
/

1| Link Creation !\ Evaluation

Fig. 2: Experimental Design: Overview of Performed Activities

In this section we describe the design of our evaluation experiment. Figure
2 shows the overview of the activities for the experimental design of our study.
It is guided by the detailed research questions stated in the following Section
5.1. In the experiment we evaluate two different data sets both taken from the
Mylyn project. The detailed characteristics of the data sets and our process to
select the two data sets are described in Section 5.2. For each of the two data
sets the experiment steps are:

Link Creation Creation of trace links with our IL approach and the two se-
lected IR algorithms VSM and LSI (cf. 5.3) and consideration of the source
code structure. We apply this to both IR and IL.

Evaluation Manual evaluation of trace links created with IL followed by man-
ual evaluation of trace links created with IR. In the evaluation of IR trace
links we could use the links already verified in the manual evaluation of IL
trace links (cf. 5.4).

5.1 Research Questions

Our overall research question is Is therea difference between the applica-
tion of IR and IL based trace link creation regarding precision and
relative recall? We divide this into three sub-questions:

RQ1: What is the precision of IR and IL created trace links? Our hypothesis
is that the precision of IL is better than IR, since link creation in IL
is based on developers’ expert knowledge.

RQ2: What is the relative recall of IR and IL created trace links? Our hy-
pothesis is that the relative recall of IL is at least as good as the relative
recall of IR. On the one hand IL can find links between artifacts which
are not textual similar. On the other hand artifacts found by IR are
also covered by interactions.

RQ3s: What is the impact of using code structure? Our hypothesis is that
using the code structure in addition to IL and IR improves the relative
recall of both trace link creation approaches.

5.2 Selection of Data Sets

The data sets used in our study consist of data from the Bugzilla ITS for require-
ments and interaction logs and from the Git VCS for implementation artifacts.
For trace link creation with our IL approach we used all three data sources
(requirements, implementation artifacts, interaction logs) whereas for IR-based
trace link creation only requirements and implementation artifacts have been
used. Issues in the Mylyn project have been created starting from early 2005,
however the open source development of Mylyn really started at the beginning
of 2007 when its source code first was made publicly available. The development
activity of Mylyn decreased in the last years but is still ongoing. A reason for
this is that the major features are already implemented and development efforts
mostly concern bug fixing.

2000 [without interactions
[J with interactions
1500 | 413 583 750
% 654 266 148
21000
A 1319 1281
1202 .
500 | 845 244 1084f 1045 =66 .
433 514 E%qmﬁ
Q > O Q N Y > 3 »)
\ Q \) \% \% \% Y ™ Y \>
S S

Fig. 3: Issue in the Mylyn Bugzilla ITS per Year

Figure 3 shows the number of issues with and without interaction per year
until mid of June 2016 when we fetched the data for our study. Till then there
were a total of 11490 issues from which 3179 (27.7%) have interaction logs at-
tached and therefore are suitable for our study. In total the 3179 issues have over
3 million interaction log entries attached. Based on these general data charac-
teristics we decided to evaluate only a subset of the existing interaction logs by
selecting a suitable subset of requirements issues. We used the following criteria
for the requirements selection:

C1: There should be two distinct data sets from different project phases, i.e.
from early phase and later phase. Thereby we want to check whether
IL trace link creation is applicable for different project circumstances.

C,: The number of interactions in the two sets should be as similar as
possible to ensure the comparability of the two data sets. Due to the
data characteristics this criteria could only be fulfilled up to a certain
extent, since also the number of interactions by issue decreases during
the years.

These criteria resulted in the creation of two data sets. The first data set Rogor
consists of the first 50 requirements issues in 2007 (and the corresponding in-
teraction log and code) and the second data set Rapi2 consists of the first 50
requirements issues in 2012 (and the corresponding interaction logs and code).
We used the first requirements of the years, as the Mylyn project employs an
annual release cycle with a major release every June. Therefore, new require-
ments are mostly created at the beginning of a year whereas around the release
date more bugs are created. Requirements are described as natural language
text using the Bugzilla issue format, i.e. a title, a description text and tech-
nical meta-data like the affected components and the assignee. For each data
set requirement issues including the comments and interaction logs have been
downloaded from Bugzilla. Comments have been included, since they often con-
tain requirement relevant information, e.g. changes to the functionality initially
stated in the description. Since there is no explicit classification of the issues
as requirement or as bug, we performed this classification for the issues by our-
selves. First we fetched an overview list with all issue titles and then manually
performed the classification of the issues by reading their title. If classification
was not possible by only using the title, we also read the issues description. The
two requirements sets have slightly different characteristics. In the first phase of
the Mylyn project more complex requirements concerning the basic functionality
and in the later phase of the project more requirements concerning small and
advanced functionality have been implemented.

To identify the code related to the requirements we used a specific VCS
version tag. For each data set we sorted all interaction log entries of the inter-
action logs in chronological order and then used the first version tag after the
last interaction log entry. We assume the so selected VCS version comprises the
implementation of the 50 requirements. From these implementation artifacts we
removed all artifacts which are not textual and cannot be processed with IR
such as pictures or binaries.

Table 1: Study Data Sets Overview
Data #Requ- #Int. VCS Ver- #Impl. Artifacts

Set iremen- Log sion Tag All Textual Touched
ts Entries by IL

Rapo7 50 7687 R_2.0.RC1 1103 756 585

Rayp12 50 1660 R.383 3451 2119 172

Table 1 shows the overview of both data sets. As expected there are much
more implementation artifacts in the second (later) data set than in the first
data set. In contrast, the amount of interaction log entries, overall and also for
each requirement, in the second data set is lower than in the first data set.

Therefore, only a minor part of all implementation artifacts are directly touched
by interactions.

5.3 IR-based Trace Link Creation

For IR-based trace link creation we applied both IR algorithms VSM and LSI to
the two data sets Rogp7 and Ryp12. Upfront we applied the preprocessing steps
as described in Section 2.1 to all used artifacts. We restricted the trace link
candidate generation to links from requirements to implementation artifacts.

Table 2: Thresholds and Number of Candidate Links for IR Algorithms
Thresholds™ 0.9 0.8 07 06 05 04 03

R VSM 0 50 596 2347 6419 13798 24040
2007181 0 3 8 40 142 354 1058
R VSM 185 2268 G431 12333 22397 30434 64284
012781 1 14 86 207 920 2424 6014

" Selected values are highlighted

To determine a reasonable threshold for the IR algorithms we initially used
approved threshold values of 0.7 for VSM [8] and 0.3 for LSI [10]. While this
worked well for Rsgg7, we had to choose different thresholds for Rog1a. As can
be seen from Table 2, which shows the number of candidate links for different
IR thresholds, for the second data set the number of generated links increases
very quickly with lowering the threshold. To limit the effort for the verification
of the links, we used thresholds with less than 1000 links. Clearly, the results
for Rog12 can only be seen as a first indication and can be improved with lower
thresholds.

5.4 Data Evaluation

To evaluate the trace links created with our IL approach we compared the created
links from both data sets (Ragp7 and Rag12) with links created by IR. We used
two settings for trace link creation: one with code structure and one without.
We performed the following steps to determine TP and FP for these link sets.
We manually verified links created by IL in Rypp7 and Rgg12. Subsequently, we
removed these verified links from the IR trace link candidate sets. This resulted
in sets of link candidates only found by IR. We also manually verified these links.
Finally, we use the verified IR links and the verified IL links to determine the
set of links only found by IL.

6 Results

In the following subsections we answer the research questions of our study and
discuss the results. In Section 6.1 we answer RQ; and RQs concerning precision
and relative recall of IL and IR created trace links. This is followed by the answer
to RQ3 concerning the consideration of code structure in Section 6.2.

6.1 Precision (RQ;) and Relative Recall (RQz2)

Table 3: Comparison of IR and IL Trace Link Creation

Ragor Ron2
1L IR (VSMy.7) IR (LSIy.3) IL IR (VSMo.9) IR (LSIy5)

#Link Cand. (LC) 1148 596 1058 240 185 920
#Impl. Artifactyc 585 203 384 172 171 444
#Requirementsy,¢ 50 23 46 37 4 34
#True Positive (TP) 1148 204 328 240 25 274
Trace Links (11871 + 171 +69) (18471 + 3Ty sar +107) (67 +24rsr +1) (4171 + 24y sar + 250)
#Impl. Artifactop 585 126 200 240 24 169
#Requirementstp 50 19 41 172 3 28
#TP Trace Links of 1324 491
all Approaches (1148;L + 69y sar + 107Ls1) (24071 + 1y sm250Ls1)
Precision 1 0.341 0.310 1 0.135 0.298
Relative Recall 0.867 0.154 0.247 0.418 0.051 0.534

Table 3 shows the overview of the number of created trace link candidates,
used implementation artifacts, used requirements, correct trace links, implemen-
tation artifacts involved in correct trace links, requirements involved in correct
trace links, sum of correct trace links created by all approaches together, pre-
cision and relative recall for both data sets. Thus, we can answer our research
questions as follows.

RQ;: What is the precision of IR and IL created trace links? For both data
sets all links created with our IL approach were correct (100% precision). For IR
precision values vary between 13% and 34% with little difference between VSM
and LSI for the standard thresholds in the first data sets and big difference for
the higher thresholds in the second data set. Thus, IL clearly outperforms IR.
Moreover, IL is independent from setting a threshold and finds more correct links
than IR for the Rsgg7 data set. Nevertheless, there are also links only discovered
by IR in this data set.

For our Rgg12 data set the situation is different due to the smaller number of
IL created trace links and much larger amount of used implementation artifacts
for IR. Note that not all requirements are involved in interaction links in this
set. This is due to the fact that some interactions concerned code outside of the
VCS tag (e.g. used framework). LSI finds in total more correct trace links for
the second data set than IL. This can be explained by the amount of considered
requirements and implementation artifacts, i.e. IL considered 37 requirements
and 172 implementation artifacts whereas LSI considered 34 and 444. In com-
parison with the values achieved by current approaches as discussed in Section
2.3 we can state that the 100% precision of IL in a real world setup is unique.
The precision of IR is acceptable for the first and good for the second data set.
The values for precision are in the range reported by DeLucia [10] (LSI), Ali
[2](VSM) and Merten[27] (LSI, VSM, ITS as data source).

RQ2: What is the relative recall of IR and IL created trace links? The used
setting in our experiment resulted in relative recall rates between 5% and 53%
(cf. Table 3) for IR and in relative recall rates of 86% and almost 42% for IL. As
expected and reported by others [7, 14], IR creates a lot of false positive trace
links even with the moderate threshold setting we used for the second data set
in our experiment. The difference in relative recall rates between the Rogg7 and
Rs012 data sets in our IL approach can be explained by the characteristics of the

data sets which resulted in a lower number of interactions for the second Rag12
data set (cf. Section 5.2 ,Table 1: Rago7 has 7687 interactions on 756 used imple-
mentation artifacts, Rog12 has 1660 interactions on 2119 used implementation
artifacts).

6.2 Using Code Structure (RQ3)

Table 4: Trace Links for different Code Nesting Levels

Nesti Raoo7I L RaoorI R

esting

Level #Link #TP Preci- #Link Cand. #TP Links® Precision

Cand. Links sion VSMy.7 LSIy3 VSMo.7 LSIo3 VSMo7 LSIo3

0 1148 1148 1.000 596 1058 120 184 0.201 0.174
1 1446 1446 1.000 858 1718 234 338 0.273 0.197
2 1831 1831 1.000 1108 2181 363 562 0.328 0.258
3 2204 2204 1.000 1382 2706 499 805 0.361 0.297
4 2565 2565 1.000 1624 3214 639 1083 0.393 0.337
5 3027 2854 0.943 1915 3927 781 1349 0.408 0.344
6 3531 3202 0.907 2253 4510 947 1612 0.420 0.357
10 5805 3639 0.627 3374 5488 1258 1779 0.373 0.324

2 Compared to IL

As mentioned in Section 2.4 the first results concern the setting of an ap-
propriate nesting level. Table 4 shows the differences according to the number
of created links and their precision for considering code structure with different
nesting levels for the Rogg7 data sets. RoggrI L refers to links generated by our
IL approach and Rogg7I R to links generated by IR. Since precision for IL drops
when considering a nesting level of code relations greater than four, we used this
nesting level for the answer of RQ3. It also can be seen that precision of IR only
drops for nesting level 10. As our current focus is to maximize the precision of
the IL approach, we choose level 4. Clearly, the results for IR could be improved
with higher nesting level. We also performed this analysis for our second data
set. Since the results are quite similar, we skip their detailed report here.

Table 5: IR and IL Trace Links Considering Code Structure

Raoor Rop12
IL IR (VSMy.7) IR (LSIy3) 1L IR (VSMy.9) IR (LSIy5)
#Link Cand. (LC) 2565 1624 3143 1126 458 2766
#Impl. Artifactrc 627 333 516 363 343 702
#Requirementsy,c 50 23 46 37 4 34
#TP Trace Links of 2565 698 1214 1126 108 784
Trace Links © (5817 463151 +54) (1010;,+62y 527 +142) > (917 + 1Tpsr +0) (4917 +11y g +282)
#Impl. Artifactrp 627 229 308 363 73 354
#Requirements (TP) 50 22 41 37 4 35

2761

(256577, + 54vsar + 142157)
0.425 0.386
0.253 0.440

#Trace Linkstp by

all Approaches

Precision 1
Relative Recall 0.929

1408
(11267, + Ovsar + 282Ls1)
1 0.236 0.283
0.800 0.077 0.557

RQs: What is the impact of using code structure? As shown in Table 5 for
both data sets all links created with our IL approach were also correct (100%
precision) when considering code structure. Furthermore, relative recall was in-
creased considerably for the second data set. Comparing Table 3 and 5 we can
see that the code structure consideration for IL results in five times more trace
links for the second data set and twice as much links for the first data set. This

can be explained by the more complex code structure due to the maturity of the
project in the second data set.

Both IL and IR considered about 1/3 more implementation artifacts when
using code structure. For VSM and LSI in the Rogg7 data set this resulted in an
increase of precision and relative recall. This is also true for the Rsg12 data set,
except for the precision value of LSI which slightly drops.

In our experiments we could reduce the number of links only found by IR
to almost zero by increasing the nesting levels of code relations. However, this
also resulted in false positive links for IL which is contrary to our research goal
to create trace links with 100% precision. Altogether, we can see that by using
code structure we could achieve our research goal of 100% precision and excellent
relative recall and that IL outperforms IR for both Mylyn project data sets.

7 Threats to Validity

In this section we discuss the threats to validity of our study. The internal
validity is threatened as manual validation of trace links was only performed by
one researcher. However, this researcher is very familiar with the Mylyn project
in general, its source code, the used development infrastructure, and has Mylyn
specific development experience for almost ten years.

When comparing the results achieved with our approach to IR the setup
of the IR algorithms is a crucial factor. Wrt. preprocessing we performed all
common steps including the identifier splitting which is specific to our used data
set. However, the higher threshold for the second data set and the nesting level
restriction impairs the results for IR. Thus, further comparison of IL and IR for
data sets with few interactions is necessary.

Clearly, the external validity depends on the availability of interaction logs
and respective tooling and usage of the tooling by developers. Up to now we have
only studied one open source project retrospectively. While the generalizability
based on one project is clearly limited, we think that using an open source project
is not a limitation: Since IL performed quite well in the loosely organized and
structured open source project, we expect even better results when applying the
approach to a more strictly structured industry project.

8 Conclusion

The results for our IL approach are encouraging. With IL we could create trace
links with 100% precision for two different data sets. Also our calculated relative
recall values are excellent, i.e. almost 96% for the first and 80% for the second
data set. Thus, the approach and the study show that trace link creation in
practice can be supported with little extra effort for the developers. Clearly, the
comparison with IR is only preliminary. We did not use the common thresholds
for the second data set and we could only compute relative recall.

We already created a tool to assess created trace links in detail. The tool
enables the automation of all steps necessary to compare two trace link sets on

the basis of single requirements. The usage of this tool for detailed trace link
evaluation and the determination of absolute recall values are part of our planed
follow up study.

We will investigate the application of our approach including the evaluation
of its practicability in a real project. The project started in Fall 2016 and lasts
until Spring 2017. In this project we evaluate IL in a different context (Scrum,
IntelliJ, Jira) where we can create both, interaction logs and a gold standard,
and thus compute recall and provide a full comparison with IR. Furthermore, we
evaluate the usage of IL created trace links by incorporating them into the ITS.
To improve our approach further, we will investigate the use of existing trace
links in combination with IL[16].

Acknowledgment We thank the open source community for providing the
data for our research.

References

1. Ali, N., Gueheneuc, Y.G., Antoniol, G.: Requirements Traceability for Object Ori-
ented Systems by Partitioning Source Code. In: Conference on Reverse Engineer-
ing. pp. 45-54. IEEE (oct 2011)

2. Ali, N., Gueheneuc, Y.G., Antoniol, G.: Trustrace: Mining Software Repositories
to Improve the Accuracy of Requirement Traceability Links. IEEE TSE 39(5),
725-741 (may 2013)

3. Asuncion, H.U., Taylor, R.N.: Automated Techniques for Capturing Custom Trace-
ability Links Across Heterogeneous Artifacts. In: Software and Systems Traceabil-
ity, pp. 129-146. Springer, London (2012)

4. Baeza-Yates, R., Ribeiro, B.d.A.N.: Modern Information Retrieval. Pearson
Addison-Wesley, Harlow, Munich, 2. edn. (2011)

5. Borg, M., Runeson, P., Ardd, A.: Recovering from a decade: a systematic mapping
of information retrieval approaches to software traceability. Empirical Software
Engineering 19(6), 1-52 (may 2013)

6. Briand, L., Falessi, D., Nejati, S., Sabetzadeh, M., Yue, T.: Traceability and SysML
design slices to support safety inspections. ACM ToSEM 23(1), 1-43 (feb 2014)

7. Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Romanova, E.: Best Prac-
tices for Automated Traceability. Computer 40(6), 27-35 (jun 2007)

8. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Enhancing an artefact man-
agement system with traceability recovery features. In: ICSM. pp. 306-315. IEEE
(2004)

9. De Lucia, A., Di Penta, M., Oliveto, R.: Improving Source Code Lexicon via Trace-
ability and Information Retrieval. IEEE TSE 37(2), 205-227 (mar 2011)

10. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Recovering Traceability Links
in Software Artifact Management Systems using Information Retrieval Methods.
ACM ToSEM 16(4), 1-50 (2007)

11. Delater, A., Paech, B.: Tracing Requirements and Source Code during Software De-
velopment: An Empirical Study. In: Int. Symp. on Empirical Software Engineering
and Measurement. pp. 25-34. IEEE/ACM, Baltimore, MD, USA (oct 2013)

12. Falessi, D., Di Penta, M., Canfora, G., Cantone, G.: Estimating the number of
remaining links in traceability recovery. Empirical Software Engineering (oct 2016)

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Fricke, M.: Measuring recall. Journal of Information Science 24(6), 409417 (1998)
Gotel, O., Cleland-Huang, J., Hayes, J.H., Zisman, A., Egyed, A., Grunbacher,
P., Antoniol, G.: The quest for Ubiquity: A roadmap for software and systems
traceability research. In: RE. pp. 71-80. IEEE (sep 2012)

Hayes, J., Dekhtyar, A., Sundaram, S.: Advancing candidate link generation for
requirements tracing: the study of methods. IEEE TSE 32(1), 4-19 (jan 2006)
Hiibner, P.: Quality Improvements for Trace Links between Source Code and
Requirements. In: Joint Proc. of REFSQ Workshops, Doctoral Symp., Research
Method Track, and Poster Track. CEUR-WS, Gothenburg, Sweden (2016)
Kersten, M., Murphy, G.C.: Using task context to improve programmer produc-
tivity. In: Proceedings of the 14th ACM SIGSOFT int. symp. on Foundations of
Software Engineering - SIGSOFT ’06/FSE-14. pp. 1-11. ACM, New York, New
York, USA (nov 2006)

Konopka, M., Navrat, P.: Untangling Development Tasks with Software Devel-
oper’s Activity. In: Int. Workshop on Context for Software Development. pp. 13—14.
IEEE/ACM (may 2015)

Konopka, M., Navrat, P., Bielikova, M.: Poster: Discovering Code Dependencies by
Harnessing Developer’s Activity. In: ICSE. pp. 801-802. IEEE/ACM (may 2015)
Kumar, B., Prakash, J.: Precision and relative recall of search engines: A com-
parative study of Google and Yahoo. Singapore Journal of Library & Information
Management 38(1), 124-137 (2009)

Maalej, W., Ellmann, M.: On the Similarity of Task Contexts. In: Int. Workshop
on Context for Software Development. pp. 8-12. IEEE/ACM (may 2015)

Maalej, W., Kurtanovic, Z., Felfernig, A.: What stakeholders need to know about
requirements. In: EmpiRE. pp. 64-71. IEEE (aug 2014)

Maéder, P., Egyed, A.: Do developers benefit from requirements traceability when
evolving and maintaining a software system? Empirical Software Engineering 20(2),
413-441 (apr 2015)

Manning, C.D., Raghavan, P., Schiitze, H.: Introduction to information retrieval.
Cambridge Univ. Press, Cambridge UK, 1. publ. edn. (2008)

McMillan, C., Poshyvanyk, D., Revelle, M.: Combining textual and structural anal-
ysis of software artifacts for traceability link recovery. In: ICSE Workshop on Trace-
ability in Emerging Forms of SE. pp. 41-48. IEEE (may 2009)

Merten, T., Falisy, M., Hiibner, P., Quirchmayr, T., Biirsner, S., Paech, B.: Soft-
ware Feature Request Detection in Issue Tracking Systems. In: RE. IEEE (sep
2016)

Merten, T., Kramer, D., Mager, B., Schell, P., Biirsner, S., Paech, B.: Do Infor-
mation Retrieval Algorithms for Automated Traceability Perform Effectively on
Issue Tracking System Data? In: REFSQ. vol. LNCS 9619, pp. 45—62. Springer,
Gothenburg, Sweden (2016)

Murphy, G., Kersten, M., Findlater, L.: How are Java software developers using
the Elipse IDE? IEEE Software 23(4), 76-83 (jul 2006)

Niu, N., Mahmoud, A.: Enhancing Candidate Link Generation for Requirements
Tracing: The Cluster Hypothesis Revisited. In: RE. pp. 81-90. IEEE (sep 2012)
Omoronyia, I., Sindre, G., Roper, M., Ferguson, J., Wood, M.: Use Case to Source
Code Traceability: The Developer Navigation View Point. In: RE. pp. 237-242.
IEEE, Los Alamitos, CA, USA (aug 2009)

	Using Interaction Data for Continuous Trace Link Creation
	Introduction
	Background
	IR and the Creation of Trace Links
	ITS as Data Source for Requirements
	Evaluation of IR created Trace Links
	Interaction Logs and Code Structure

	Related Work
	Interaction Log Trace Link Creation Approach
	Experiment Design
	Research Questions
	Selection of Data Sets
	IR-based Trace Link Creation
	Data Evaluation

	Results
	Precision (RQ1) and Relative Recall (RQ2)
	Using Code Structure (RQ3)

	Threats to Validity
	Conclusion

