
Increasing Precision of Automatically Generated
Trace Links

Paul Hübner and Barbara Paech

Institute for Computer Science, Heidelberg University,
Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
{huebner,paech}@informatik.uni-heidelberg.de

Abstract. [Context and Motivation] In order to use automatically
created trace links during a project directly, the precision of the links
is essential. Our interaction-based trace link creation approach (IL) uti-
lizes the interactions of developers recorded in an integrated development
environment (IDE) while working on a requirement. For this, develop-
ers need to indicate the requirement they are going to work on before
coding. This approach worked well in an open-source project with de-
velopers who were interested in the interaction logs, but did not work
well with students who were not particularly motivated to trigger the in-
teraction recording. [Question/problem] Developers often create trace
links themselves by providing issue identifiers (IDs) in commit messages.
This causes little effort and does not require the awareness for interac-
tion recording. However, as confirmed by recent research, typically only
60% of the commits are linked. In this paper, we study whether and how
IL can be improved by a combination with links created by issue IDs in
commit messages. [Principal ideas/results] We changed our approach
so that interaction logs are associated with requirements based on the
IDs in the commit-messages. Thus, developers do not need to manually
associate requirements and interaction logs. We performed a new student
study with this approach. [Contribution] In this new study, we show
that with this new approach and link improvement techniques precision
is above 90% and recall is almost 80%. We also show that for our data
this is better than using commit-messages only and better than the often
used information retrieval-based approaches.

Keywords: traceability, interaction, requirement, source code, precision

1 Introduction

Existing trace link creation approaches are most often based on information
retrieval (IR) and on structured requirements, such as use cases [3, 5]. These
approaches mostly focus on the optimization of recall [3]. In addition, their
precision is bad which makes the approaches not applicable when directly using
created links [5]. Therefore, a review of the created link candidates by an expert
is necessary before their usage. In security-critical domains such as aeronautics
and the automotive industry, complete link sets are required. These links are only

created periodically, when needed for certification to justify the safe operation
of a system [4]. Therefore, the additional effort to remove many false positive
links is accepted.

Nowadays, many software companies use issue tracking systems (ITS) to
specify their requirements [15]. For open source projects, the usage of an ITS
is a crucial point and de facto standard [18]. In ITS, the requirements text is
unstructured and requirement issues are mixed with other issues for e.g. bug
tracking, task and test management [18]. Furthermore, for many development
activities, it is helpful to consider the links between requirements and source
code during development, e.g. in maintenance tasks, for program comprehension
and re-engineering [16, 7].

If these links are created continuously during the development, e.g. after each
commit performed by a developer, they can be used continuously. In these cases,
the big effort of handling false positives, and thus bad precision is not practi-
cable. Therefore, a trace link creation approach for links between unstructured
requirements and code with perfect precision and good recall is needed.

Our interaction-based trace link creation approach (IL) aims at continuous
link creation and usage. IL relies on developers manually selecting the require-
ment in their IDE before they start to work on it. Then, interactions recorded in
the IDE are assigned to this requirement and the code files touched during inter-
actions assigned to this requirement are used to create trace links. The approach
is implemented in a corresponding tool1.

In an initial study [10] based on open source data, we could show that IL
links can have perfect precision and good recall (i.e. at least above 80%), if
the developers use the requirements selection systematically. Since the initial
recall of IL for one of the data sets used in this study was below 80%, we also
used source code structure to improve the recall. Source code structure denotes
relations between source code files such as references. Basically, we added further
links by following the references of already linked files.

In a second study [11] with students as developers, the developers did not
perform the manual selection of the requirements systematically. This lead to
the creation of wrong trace links by our IL approach (precision of 43.0%, recall
of 73.7% and f0.5-measure of 0.469). To countervail the creation of wrong links,
we came up with wrong link detection techniques. On the one hand, we used
techniques based on data of the recorded interaction (e.g. interaction duration
and frequency). On the other hand, we used techniques based on the source
code structure. With these wrong link detection techniques, we could improve
the precision of IL to 68.2% (f0.5-measure of 0.624) [11]. However, the precision
improvement also resulted in a decline of the recall to 46.5%. This is still not
satisfying. Thus, we looked for a way to remove the error-prone manual selection
of the requirement by the developers.

The usage of issue identifiers (IDs) to link commits to requirements and bug
reports is a common convention in open source projects [2, 18, 23]. Developers
often create trace links themselves by providing issue IDs in commit messages

1 https://se.ifi.uni-heidelberg.de/il.html, tool and data download

https://se.ifi.uni-heidelberg.de/il.html

[22]. Trace links can be created by linking all files affected by a commit with
the requirement specified by the issue ID in the commit message. This is little
effort and does not require the awareness for interaction recording. However, as
confirmed by recent research, typically only 60% of the commits are linked [23].
Therefore, our idea is to combine the ID-based linking with interaction recording.
Instead of using manually selected requirements, the issue IDs from developers’
commit messages are used. All code files touched in the interactions before the
commit are associated to the requirement identified through the issue ID.

As the students of our second study also used requirement issue IDs in their
commit messages, we first simulated the combination of issue ID and IL retro-
spectively with the data of our previous study (without using the wrong link
detection techniques). This directly improved the precision from 43.0% to 56.6%
without affecting the recall.

This encouraged us to improve our approach with consideration of IDs in
the commits. This new approach is called ILCom. We applied ILCom in a new
study with students. Without further wrong link detection techniques, ILCom

had a precision of 84.9% and a recall of 67.3% (f0.5-measure of 0.807). We also
applied our wrong link detection techniques [11] and recall improvements [10]
and could finally achieve a precision of 90.0% and a recall of 79.0% (f0.5-measure
of 0.876). Only using the issue IDs and the list of changed files from commits for
link creation similar as described by [23] together with our wrong link detection
and recall improvement techniques resulted in a precision of 67.5% and recall
of 44.3% (f0.5-measure of 0.611). For IR-created links using latent semantic
indexing (LSI) [6], also including our wrong link detection, precision was 36.9%
and recall 55.7% (f0.5-measure of 0.396). Thus, in our new study we show that
ILCom achieves very good precision and recall and that it is much better in both
precision and recall than the standard techniques.

The remainder of the paper is structured as follows. Section 2 introduces ba-
sics for evaluation of automatically created trace links, the projects used for the
evaluation, our basic IL approach and former study results. Section 3 illustrates
the details of the ILCom approach and its implementation. It also reports on
our retrospective preliminary study. Section 4 outlines the experimental design
of our new study. Section 5 presents and discusses the results of our new study.
Section 6 discusses the threats to validity and section 7 related work. Finally,
Section 8 concludes the paper and gives an outlook on our further research.

2 Background

In this section we introduce basics of trace link evaluation, describe the used
study projects, introduce our IL approach and report about IR based trace link
creation and results of our former studies.

2.1 Trace Link Evaluation

In the following, we sketch the basics of trace link evaluation as already described
in our paper [11]. To evaluate approaches for trace link creation [3, 5], a gold

standard which consists of the set of all correct trace links for a given set of
artifacts is important. To create such a gold standard, it is necessary to manually
check whether trace links exist for each pair of artifacts. Based on this gold
standard, precision and recall can be computed.

Precision (P) is the amount of correct links (true positives, TP) within all
links found by an approach. The latter is the sum of TP and incorrect links
(false positive, FP). Recall (R) is the amount of TP links found by an approach
within all existing correct links. The latter is the sum of TP and false negative
(FN) links:

P =
TP

TP + FP
R =

TP

TP + FN
Fβ = (1 + β2) · P ·R

(β2 · P) +R

Fβ-scores combine the results for P and R in a single measurement to judge the
accuracy of a trace link creation approach. As shown in the equation, for Fβ
above, β can be used to weight P in favor of R and vice versa. In contrast to
other studies, our focus is to emphasize P, but still consider R. Therefore, we
choose F0.5 which weights P twice as much as R. In addition, we also calculate
F1-scores to compare our results with others. For approaches using structured
[8] and unstructured [19] data for trace link creation good R values are between
70 and 79% and good P values are between 30 and 49%.

2.2 Evaluation Projects

In the following, we describe the three projects we used for the evaluation of our
approach. The first project is Mylyn a open source project which we used in our
first IL evaluation [10]. In the project a plug-in to manage development tasks
directly within the IDE is developed. We used the public accessible project’s
requirements and interaction log data stored in an ITS and source code in the
Git version control system to create our data sets. We created two data sets
using excerpts of the Mylyn project data from the years 2007 and 2012. They
are called M2007 and M2012 in the following. Details can be found in [10].

The other two projects are university student projects we created one data set
for each project using interaction recording of our tools, requirements managed
in an ITS and source code in a version control system. Since the first university
student project finished in 2017 and the second in 2018 the data sets for these
project are called S2017 and S2018 respectively. Both are Scrum-oriented working
with a real world customer in sprints. The first of them lasted from October 2016
to March 2017. We used it in the evaluation of a first IL improvement [11]. The
second project lasted from October 2017 to March 2018. We used this project’s
data set S2018 in the actual evaluation. The details of the second data set are
explained in Section 4.2.

The aim of the S2017 project was to develop a system to store and manage
all health care reports for a patient in a single data base. The customer was
the IT department of the university hospital. The aim of the S2018 project was
to develop an Android-based indoor navigation app for students in university

buildings. Typical use cases for such an app are navigating to the room of a
certain lecture or finding any other point of interest efficiently. The customer
was a mobile development company. In both projects, an adviser from our chair
was involved. Seven students participated in the S2017 project and six students in
the S2018 project. The projects were split in a corresponding number of sprints.
In each of these sprints, one of the students acted as Scrum master and thus was
responsible for all organizational concerns such as planning the development
during the sprint and communicating with the customer.

For all requirement management-related activities, in both projects a Scrum
Jira2 Project was used. This included the specification of requirements in the
form of user stories and the bundling of the stories in epics. An example of a
user story in the navigation app project is Show point to point route and the
corresponding epic of this story is routing. To assign the implementation of user
stories to developers, sub-task issues were used. A sub-task comprises partial
work to implement a user story, e.g. Show route info box. For the implemen-
tation, the developers used Git as version control system and the Webstorm3

version of intelliJ in the first and the Eclipse IDE with the Android software de-
velopment kit (SDK) in the second project. For both IDEs we provided plug-ins
implementing our interaction recording tools. For the usage of Git in the S2018
project, there was an explicit guideline to use a Jira Issue ID in any commit
message to indicate the associated Jira Issue. Although not directly required,
the developers used this convention in the S2017 project as well.

In the first S2017 project, the developers used JavaScript as programming
language which was requested by the customer. Furthermore, the MongoDB4

NOSQL database and the React5 UI framework were used. In the S2018 project,
the customer provided a proprietary Java SDK of their own for the general use
case to develop Android mobile navigation apps. The developers needed two
sprints to understand the complexity of the SDK and to set up everything in a
way to work efficiently on the implementation of requirements. The programming
language for the logic and data management part was Java and the UI was
implemented in Androids own XML based language.

In both projects at the beginning of the first sprint, we supported the develop-
ers with the installation and initial configuration of our interaction log record-
ing tools. We also gave a short introduction on the implemented interaction-
recording mechanism and how to use the tools during the project.

In Section 2.4 we summarize the previous evaluations and compare them with
information retrieval based link creation. In Section 3.3 we use the S2017 project
to test our assumption that using issue IDs in commit messages improves the
precision. In Section 4 we use the S2018 project to evaluate our new approach
ILCom.

2 https://www.atlassian.com/software/jira
3 https://www.jetbrains.com/webstorm/
4 https://www.mongodb.com/
5 https://reactjs.org/

https://www.atlassian.com/software/jira
https://www.jetbrains.com/webstorm/
https://www.mongodb.com/
https://reactjs.org/

2.3 IL Approach Overview

 (1) Interaction Capturing
 (2) Trace Link Creation

Requi-

rement

From ITS

Inter-

action

Log

Trace

Links

(Part 1)

(3) Trace Link Improvement

Impl.

Artifacts

from

VCS

Interaction Log

aggregation

Freq-

uency

Event

Types

Source

Code

Struct.

Trace

Links

(Part 2)
Code

Level

Python NLTK

Data Approach Step Data usage Sequence Flow

Source Code Structure

generation Python EsprimaIntelliJ Activty Tracker

Durat-

ion

Python NLTK

Improvements

Precision

Recall

ILi

Type

Dur.

Frequ.

IL

Capture of

Interactions in IDE

during Requ. Impl.

IL

Fig. 1: IL Trace Link Creation Overview: Interaction Capturing, Trace Link Cre-
ation and Improvement ILi

Figure 1 shows the overview of our IL approach consisting of three steps. In
the first step Interaction Capturing, interaction events in the IDE of a developer
are captured and associated to a requirement. We implemented our approach as
plug-in for the IntelliJ IDE. For this, we extended an existing activity tracker
plug-in to also track the interactions with requirements. In addition, we used
the Task & Context functionality of IntelliJ to associate interactions with re-
quirements. The developers could connect IntelliJ to the Jira project and the
developers had to select the specific Jira issue with the UI of the Task & Con-
text functionality when working on a requirement. As a result, the interaction
log contained activation and deactivation events for requirement issues. These
activation and deactivation events were used to allocate all interactions between
the activation and deactivation event for a specific requirement to this specific
requirement. Since the developers also used sub-task issues and sub-tasks de-
scribe details for implementing the requirement, we combined the interactions
recorded for requirements and for the corresponding sub-tasks.

In the second step Trace Link Creation, all interaction events captured for a
requirement are used to generate trace links between the requirement and the
source code files affected by the interactions. We did not consider files such as
build configurations, project descriptions, readme files, meta-data descriptions,
binaries etc. and files from 3rd parties such as libraries, as we focused on the
code created by the developers. Interaction event-specific metadata like the event
type (edit or select), the duration as the sum of all events durations based on the
interactions time stamps for specific files and the frequency of how often an in-
teraction occurred for a specific file were captured. The result of this second step
is a list of trace links including the metadata aggregated from these interactions
which is used as input for the third step Trace Link Improvement.

In this third step, precision is improved by removing potential wrong links
using the interaction-specific metadata frequency, duration, and event type from
the previous step. For frequency, duration, and event type, different settings
are possible. Precision is also improved by using the source code structure, i.e.
the references from one source code file to other source code files. In our P2017

study, we found that linking only source code files which are connected by source

code structure with each other improves the precision significantly (source code
structure in story) [11]. Finally, we also use the source code structure to improve
the recall of IL. In this case, the source code structure of source code files which
are already linked to a requirement is utilized. We add links by following the
relations of the source code structure to other source code files up to a certain
level [10].

In the following, we denote our IL approach as IL when applying the first
two steps only and as ILi when also applying the improvement techniques of the
third step.

2.4 IR based Link Creation and Previous Studies

To compare the results of our IL approach we also created links with information
retrieval (IR). IR based link creation uses the textual content of documents and
creates links based on textual similarity. Before document text content is pro-
cessed by IR preprocessing of the textual content is performed. We performed all
common IR preprocessing steps like stop word removal, punctuation, character
removal, and stemming [1, 3]. We also performed camel case identifier splitting
(e.g. RouteInfoBox becomes Route Info Box), since camel case notation has been
used in the source code [6]. In our studies we used the two most common IR
techniques for trace link creation vector space model (VSM) and latent semantic
indexing (LSI) [6, 3, 5]. The basic difference between these two IR techniques
is that LSI can also consider synonyms of terms as similar whereas VSM only
considers equal terms.

In the P2018 project the requirements were specified in German, but the
source code files were in English. Thus we automatically translated the P2018

requirements using the googletrans Python library6 before preprocessing and
IR application. Since the user stories of both student projects P2017 and P2018

contained only short texts, the used threshold values for IR had to be set low.
Source code structure-based precision and recall improvements (cf. section 2.3)
have also been applied to the IR (IRi) and IL created trace links (ILi).

Table 1: Results for IR and IL in previous Studies

Approach1 Data
Set

Pre-
cision

Re-
call

F0.5 F1.0
#Links2 #Sto-

ries
Src Files

CE TP FP GS FN Used GS

M2007 1.000 0.929 0.985 0.963 2565 2565 0 2761 196 50 627 627
M2012 1.000 0.800 0.952 0.889 1126 1126 0 1408 282 50 363 702ILi

interaction link creation
with improvement

P2017 0.682 0.465 0.624 0.553 148 101 47 217 116 13 63 91
M2007 0.310 0.248 0.295 0.275 1058 328 730 1324 996 41 200 585
M2012 0.298 0.558 0.328 0.388 920 274 646 491 217 35 169 444IR

information retrieval
link creation

P2017 0.343 0.161 0.280 0.219 102 35 67 217 182 9 17 91
M2007 0.386 0.440 0.396 0.411 3143 1214 1929 2761 1547 41 308 627
M2012 0.283 0.557 0.314 0.376 2766 784 1982 1408 624 35 354 702IRi

information retrieval
link creation

with improvement P2017 0.351 0.217 0.312 0.268 134 47 87 217 170 9 21 91

1 IR settings for the data sets are denoted as <IR-model(similarity threshold)>: M2007 LSI(0.3), M2012

LSI(0.5), P2017 LSI(0.1)
2 created (CE), true positive (TP) =̂ correct, false positive (FP) =̂ wrong , gold standard (GS), false negative

(FN) =̂ not found

6 https://pypi.org/project/googletrans/

https://pypi.org/project/googletrans/

Table 1 shows the results for IR and IL for our previous studies using the
data sets explained in Section 2.2. When comparing the precision, recall and
f0.5-measures of IRi and ILi, ILi clearly outperforms IRi in all three data sets.

3 Commit based Link Creation and ILCom

In this section, we introduce our commit-based variant of IL, called ILCom. We
provide an overview of all trace link creation techniques used in our new study.
This also includes the creation of trace links by only using commit data [22]. We
also present the results of a preliminary retrospective simulated application of
ILCom to the data set P2017.

3.1 ILCom

The difference between IL and ILCom lies in the first interaction capturing step.
ILCom uses both recorded interactions and issue IDs in commit messages for
link creation. In ILCom, interactions are recorded until a developer performs a
commit. If the commit message contains an issue ID, all recorded interactions are
associated to this issue ID and the history of recorded interactions is cleared. If
multiple issue IDs are contained in the commit message, the recorded interactions
are associated to all issue IDs. If no issue ID is contained in the commit message,
interaction recording continues until there is a commit with a commit message
containing an issue ID. Clearly, this can impact precision and recall, as the
commits without ID might be associated with another issue [9, 13]. This will be
discussed in section 5.4. After the association of issue IDs with interactions has
been obtained, link creation can be performed as described for IL in Section 2.3.

We implemented the interaction capturing for ILCom for the P2018 project
as plug-in for the Eclipse IDE. Our tool bundles all recorded interactions and
uploads them to the Jira issue specified by the Jira issue ID in the commit
message. The interaction events recorded by our tool comprise a time stamp, the
type of interaction (select or edit), the part of the IDE in which the interaction
occurred (e.g. editor, navigator, etc.), the file involved in the interaction, and
a degree of interest (DOI) metric for the file. The DOI is a numerical value
calculated for a file considering the number of interactions (frequency) and the
type of interactions with the file, i.e. edit interactions are rated higher than select
interactions [12].

3.2 Trace Link Creation Techniques

In the following we summarize the notations for the different link creation (IR,
IL, ComL and ILCom) and improvement techniques (shown by subscript i):

IR denotes the approach for link creation by information retrieval and IRi

denotes that also source code structure based improvement techniques
have been applied (cf. Section 2.4).

IL denotes the approach for link creation by using the recorded inter-
actions and ILi denotes that also interaction-specific metadata and
source code structure based improvement techniques have been ap-
plied (cf. Section 2.3).

ComL denotes the approach for link creation by using the issue IDs from
commit messages and the files contained in the commits and ComLi

denotes that also source code structure based improvement techniques
have been applied.

ILCom denotes the approach for link creation by using the recorded inter-
actions and the issue IDs from commit messages and ILCom i denotes
that also interaction-specific metadata and source code structure based
improvement techniques have been applied (cf. Section 3.1)

3.3 Retrospective Study

As described in the introduction, we analyzed the P2017 project data set re-
garding IDs in commit messages. We found that there were significantly more
commits with issue IDs (per developer) than there were activation and deacti-
vation events in the recorded interaction logs. For one developer, the processing
of 18 requirements was recorded in the interaction logs, but there were 71 com-
mits with requirement issue IDs for the same developer in Git. This does not
directly indicate that the interaction log recording is wrong, since it is possible
that a developer performed multiple commits for one requirement successively.
However, after a random check of the time span of interaction recording for two
requirements we found that there were commits with different issue IDs in this
time span. This encouraged us to analyze the data further and thus simulate
retrospectively the application of ILCom.

Table 2: 2017 Project Results: Precision and Recall for Created Trace Links

Approach
Pre-
cision

Re-
call

F0.5 F1.0
#Links #Sto-

ries
#Sub-
tasks

Src Files

CE TP FP GS FN Used GS

IL interaction link creation 0.430 0.737 0.469 0.543 372 160 212 217 57 19 98 89 91
ILi with improvement 0.669 0.465 0.615 0.549 151 101 50 217 116 13 72 63 91
ComL commit link creation 0.620 0.465 0.581 0.532 163 101 62 217 116 19 98 78 91
ComLi with improvement 0.659 0.401 0.584 0.499 132 87 45 217 130 11 66 59 91
ILCom inter. and commit link creation 0.566 0.733 0.593 0.639 281 159 122 217 58 19 98 86 91
ILCom i with improvement 0.736 0.539 0.686 0.622 159 117 42 217 100 13 72 63 91

Table 2 shows the results for our retrospective study with the data from
the data set P2017. We created the trace links by the different approaches as
described in the following. For ComL, we created links for all commits with re-
quirement issue IDs in the commit message from the requirement referenced by
the ID to all source code files of the commit. For ILCom, we used the interactions
recorded for IL and the commits with issue IDs. We ordered the Git commits
with requirement issue IDs and the interaction log recording by time. All inter-
action log recordings between two commits with issue IDs are assigned to the
issue from the second commit. Since there were also commits without issue ID
which we just ignored in our evaluation, this kind of interaction log recordings

to commit assignment is not perfect. If a developer just did not add an issue ID
in a commit, interactions are assigned wrongly and precision is impaired. This
simulates retrospectively the application of ILCom.

Table 2 always shows the best achieved f0.5-measure within all performed
settings for an approach. Moreover, the overall best values for precision and
f0.5-measure are highlighted. ILCom i has a precision of 73.6%, a recall of 53.9%
and a f0.5-measure of 0.686 which outperforms the precision and recall of all
other approaches. This confirmed our idea that IL can be combined with the use
of issue IDs from commit messages.

4 Experiment Design

In this section, we describe the details of our new study starting with the research
questions and the description of how we created the trace links and compared
the results with our former studies in 4.1, followed by the description of the data
sources in 4.2 and and the gold standard creation in 4.3.

4.1 Research Questions

The research questions we answer in our study are:

RQ1: What is the precision and recall of ILCom- and ILCom i-created trace
links? Our hypothesis was that the initial precision of ILCom improves,
compared to our P2017 study, since there is no additional effort for
requirement selection by developers. For ILCom i compared to ILCom,
we expected a further precision improvement.

RQ2: What is the precision and recall of ComL- and ComLi-created trace
links? Our hypothesis was that precision and recall are worse than
the precision of ILCom- and ILCom i-created links respectively, as the
latter uses more information (the interactions).

RQ3: What is the precision and recall of IR- and IRi-created trace links? Our
hypothesis was that IR has a significantly worse precision and similar
recall in comparison to ILCom.

The overall goal of this new study is to evaluate, whether the interaction and
commit based link creation by ILCom improves the precision compared to the
only interaction based link creation by IL (RQ1). Moreover, we also would like to
investigate whether recording and using interactions outperforms link creation,
which relies on commit data only (RQ2). Finally, we also compare the results
of ILCom-created links with IR, since IR serves as a baseline for automated link
creation and for the comparison with our previous studies (RQ3).

4.2 Data Sources

In our evaluation we used three different data sources which are described in the
following.

Source Code in the Git Version Control System The Git repository
comprises 406 commits. 226 commits (55.67% of all commits) did contain a Jira
issue ID which is a similar proportion as reported by others [22]. We excluded
the same file types from the Git repository as for IL (cf. Section 2.3).

We used the first 395 commits in the Git Repository for link creation. The
395th commit is the commit for the finish of the project’s last sprint. Commits
after the 395th commit did not contain issue IDs and were performed to refactor
the source code to the customers needs after the final project presentation. The
Git repository for the 395th commit contained 40 java and 26 xml files.

Requirements as Issues in Jira After the project was finished, there were 23
story issues in the Jira project. However, three of the story issues did not specify
requirements, but testing and project organization. Therefore, we removed these
three stories from our evaluation. Furthermore, the processing status of 3 story
issues was unresolved at the end of the project and in addition all sub-tasks of
these 3 unresolved stories where unresolved as well. Therefore, we also removed
these 3 stories and their interaction recordings from our evaluation and used
only the 17 remaining stories and their 74 sub-tasks along with their interaction
recordings.

Interaction Recordings The interaction recordings for the 17 stories and
74 sub-tasks comprise 6471 interaction events separated in 205 commits. After
removing interaction events whose files were out of scope as described previously
(cf. Section 2.3), 4012 interaction events were left in the interaction recordings
and used for link creation

4.3 Gold Standard Creation

The gold standard creation was performed in March 2018 by the 6 developers
of the project between the finish of the last sprint and the final presentation to
the customer. The developers vetted link candidates between requirements and
the source code files in the actual version (395th commit) in the projects Git
repository.

The developers vetted the links based on their involvement in the sub-tasks
of a requirement. If there were two developers with an equal amount of sub-tasks,
both vetted the links and only the links vetted as correct by both were used in the
gold standard. For each developer, a developer-specific interactive questionnaire
spreadsheet with all link candidates to vet was generated. This contained for
each requirement, all possible link candidates to all 66 source code files. The
vetting resulted in 309 gold standard trace links, where each requirement and
each code file was linked at least once.

5 Results

This section reports the results of our evaluations and answers the RQs.

Table 3: Results for ILCom and ILCom i with Different Settings

Approach
Set-
ting1

Pre-
cision

Re-
call

F0.5 F1.0
#Links Src Files

CE TP FP GS FN Used GS

ILCom default interaction link creation none 0.849 0.673 0.807 0.751 245 208 37 309 101 58 66
ILCom i interaction type improvement T:e 0.904 0.460 0.758 0.609 157 142 15 309 167 58 66
ILCom i interaction type improvement T:s 0.829 0.282 0.597 0.420 105 87 18 309 222 37 66
ILCom i duration improvement D10 0.885 0.521 0.776 0.656 182 161 21 309 148 52 66
ILCom i duration improvement D60 0.901 0.411 0.727 0.564 141 127 14 309 182 50 66
ILCom i frequency improvement F2 0.813 0.463 0.706 0.590 176 143 33 309 166 54 66
ILCom i frequency improvement F10 0.850 0.311 0.631 0.455 113 96 17 309 213 40 66
ILCom i source code structure in story imp. Sis 0.904 0.485 0.771 0.632 166 150 16 309 159 40 66

ILCom i selected improvement tech. setting
T:e,s;
Sis;CS

0.900 0.790 0.876 0.841 271 244 27 309 65 62 66

1 T:e|s = Type:edit|select, D10|D60 = dur.>= 10|60 sec., F2|10 = freq.>= 2|10, Sis = Source code structure in story, CS

= Source code structure

5.1 Answer to RQ1: Comparison of IL and ILCom

Table 3 shows the results for ILCom and for different settings for ILCom i. ILCom

has a precision of 84.9% and a recall of 67.3% and thus a f0.5-measure of 0.807.
Similar to our P2017 study, we evaluated different settings for our improvement
techniques (cf. first column of Table 3) [11]. Initially, we investigated the dif-
ferent wrong link detection techniques in isolation and then combined different
techniques to achieve the overall best precision improvement. On this best preci-
sion result, we also applied our source code structure-based recall improvement.
The last row of Table 3 shows this best case of ILCom i. For this, the setting
was to use the type select and edit (T:e,s), to restrict the source code files to be
connected with each other by code structure in the story (Sis) and to use the
code structure to improve recall (CS). In this best case, ILCom i has a precision
of 90.0% and a recall of 79.0% and thus a f0.5-measure of 0.876. Thus, ILCom i

improves precision by 5.1%, recall by 22.7% and f0.5-measure by 0.069 compared
to ILCom.

5.2 Answer to RQ2: Comparison of ILCom and ComL

Table 4: Results for ComL, ComLi and Comparison with ILCom

Approach1 Pre-
cision

Re-
call

F0.5 F1.0
#Links Src Files

CE TP FP GS FN Used GS

ILCom inter. and commit link creation 0.849 0.673 0.807 0.751 245 208 37 309 101 58 66
ILCom i with improvement 0.900 0.790 0.876 0.841 271 244 27 309 65 62 66
ComL commit link creation 0.668 0.417 0.597 0.514 193 129 64 309 180 59 66
ComLi with improvement 0.675 0.443 0.611 0.535 203 137 66 309 172 61 66

1 For the application of improvement techniques the best case is shown

Table 4 shows the results for ComL and ComLi and for comparison also the
previously reported results of ILCom. ComL has a precision of 66.8% and a recall
of 41.7% and thus a f0.5-measure of 0.597. For ComLi, we first applied the source
code structure in story precision improvement followed by source code structure
recall improvement. ComLi has a precision of 67.5% and a recall of 44.3% and
thus a f0.5-measure of 0.611. In comparison to ILCom and ILCom i, precision,
recall, and f0.5-measure are worse respectively.

Table 5: Results for IR, IRi and Comparison with ILCom and ILCom i

Approach1 Pre-
cision

Re-
call

F0.5 F1.0
#Links #Sto-

ries
Src Files

CE TP FP GS FN Used GS

ILCom inter. and commit link creation 0.849 0.673 0.807 0.751 245 208 37 309 101 17 58 66
ILCom i with improvement 0.900 0.790 0.876 0.841 271 244 27 309 65 17 62 66
IR information retrieval link creation 0.335 0.492 0.358 0.398 454 152 302 309 157 16 60 66
IRi with improvement 0.369 0.557 0.396 0.444 466 172 294 309 137 16 64 66

1 IR settings are denoted as <IR-model(similarity threshold)> : VSM(0.2)

5.3 Answer to RQ3: Comparison of ILCom and IR

Table 5 shows the results for IR and IRi and for comparison also the previously
reported results of ILCom and ILCom i. IR has a precision of 33.5% and a recall
of 49.2% and thus a f0.5-measure of 0.358. For P2018, IRi has a precision of 36.9%
and a recall of 55.7% and thus a f0.5-measure of 0.396. IRi improves precision by
3.4%, recall by 6.5% and f0.5-measure by 0.038 compared to IR. In comparison
to ILi and ILCom i, precision, recall , and f0.5-measure is worse respectively. For
all data sets, ILi outperforms IRi. The IR results for our former projects are
quite similar and similar to other studies as well [19].

5.4 Discussion

Precision and recall of ILCom are better than IL. When looking at all studies we
performed, it can be seen that IL and ILCom outperform all other link creation
approaches, i.e. IR- and commit-based link creation ComL (cf. Table 1 in Section
2.4). The fact that IR link creation between unstructured requirements in ITS
and source code is worse than in structured requirement cases is reported by
others [8, 3, 19]. This is also confirmed by our three studies (cf. results for IR in
Table 1 and 5) and was one of our initial motivations for the development of IL.

There are several possible reasons for the worse behaviour of ComL in com-
parison to ILCom. It is interesting that the precision of ComL is roughly 60% in
the retrospective study and in the new study. That means the issue IDs given
by the developers are only partly correct. This observation is similar to research
within developers’ commits behavior and the contents of commits [9, 13]. These
studies report about tangled changes, that is a commit often comprises multiple
unrelated issues. Also, we observed that developers manually excluded files in one
commit, which were correct in the gold standard and then included these files in
a follow-up commit. A reason for this behavior could be a change of the require-
ment during the project time. Thus, the exclusion behavior was correct when
the commit was performed, but was wrong for the final state of the requirement.
The reasons for the worse recall of ComL in comparison to ILCom could be select
interactions. Select interactions are not detected by commits. These missed files
also affect the application of source code structure-based recall improvement.

The improvement techniques developed in our last studies also proved to
be reasonable in this new study. Moreover, the improvement techniques also
performed well for links created with IR and ComL. By applying our wrong link
detection techniques, the precision is improved, independent of how the links
were created. As wrong links detection techniques impair recall, we apply source
code-structured based recall improvement. The improvement of recall by using

the source code structure worked reasonable for IL in the last two studies and
is outperformed in this new study. The application of recall improvement in this
new study resulted in the best overall recall for the complete studies.

Altogether we showed that the creation of links with interaction and com-
mit data by ILCom i achieves very good precision and recall. This confirms our
assumption that the additional effort of manually selecting the requirement to
work on caused the bad precision of IL in our previous P2017 study. We think
that precision and recall can be even better, if developers directly use the created
links during the projects, as in the Mylyn project. The use will likely motivate
developers to use interaction logging and commit IDs carefully.

6 Threats to Validity

As described in our previous study [11] the internal validity is threatened as
manual validation of trace links in the gold standard was performed by the stu-
dents working as developers in a project context of our research group. However,
this ensured that the experts created the gold standard. Also the evaluation of
the links was performed after the project had already been finished so that there
was no conflict of interest for the students to influence their grading.

When comparing the results achieved with our approach to IR, the setup of
the IR algorithms is a crucial factor. Regarding preprocessing, we performed all
common steps including the identifier splitting which is specific to our used data
set. However, the low threshold values impair the results for the precision of IR.
Therefore, further comparison of IL and IR in which higher threshold values are
possible (e.g. with more structured issue descriptions) is necessary.

The external validity depends on the availability of interaction logs and re-
spective tooling and usage of the tooling by developers. The generalizability
based on one student project is clearly limited. Although explicitly requested,
not all commits contained a Jira issue ID in the commit messages. This affects
the resulting association of recorded interaction logs to requirement issues and
thus the created trace links. However, the percentage of commits with issue IDs
is similar as reported for other projects [22]. This indicates that the results of
our evaluation might also apply for industry projects.

7 Related Work

In our previous papers [10, 11], we already discussed related work on IR, in-
teraction logging and the assessment of interaction recording quality which is
shortly summarized in the following: The systematic literature review of Borg
on IR trace link creation [3] gives an overview of IR usage and results. In [14],
Konopka uses interaction logs to detect relations between code files and in [24],
Soh showed with an observation study that observed interaction durations do
not always correspond to recorded interaction durations.

In [20], Omoronyia published an approach in which interactions are used to
visualize and navigate trace links. In a follow up paper [21] of the same authors,

they also use interactions for trace link creation. They consider developer col-
laboration and rank interaction events. Their approach achieves a precision of
77% in the best case which is still not as good as our results for ILCom.

In [22], Rath report about a data set Ilm7 they created from seven open
source projects for the purpose of evaluating traceability research. They used
the issue IDs in commit messages to link issues to code files. They report that
only 60% of the commits contain an issue ID.

In their follow-up work [23], they use the Ilm7 data set to train different
machine learning classifiers to countervail the problem of commits without issue
IDs. To train their classifiers, they not only used the files and issue IDs from
commits, but also textual similarity (IR) between different artifacts (i.e. the
commit message text, the issue text, the source code text) and further data like
developer-specific information. In their final experiment, they used the trained
machine learning classifiers to identify the matching issues for commits without
issues and achieved an averaged recall of 91.6% and precision of 17.3%. A direct
comparison with IR-based link creation is missing. However, since these results
are quite similar to what others have achieved with relying on IR [19] and ITS
data only, it seems that the usage of IR to train machine learning classifiers
results in the same low precision values as when relying on IR only. When directly
comparing their results with the results achieved by ILCom in this study (recall
of 79.0% and precision of 90%), it is clear that for our research goal of precision
optimization ILCom is far superior.

8 Conclusion and Outlook

In this paper, we investigated the precision and recall of our interaction-based
trace link creation approach ILCom. In contrast to our previous studies, we
changed the implementation of our interaction log recording tool. With the new
implementation, we reduce the additional effort for developers to assign inter-
action log recordings to requirements and removed the need for interaction log
recording awareness.

Our new approach and tool build on the common practice to specify issue
IDs in commit messages. It uses these issue IDs from commit messages to assign
interaction log recording to requirements. ILCom has a precision of 90.0% and
recall of 79.0% which outperforms the results of our previous P2017 study (pre-
cision of 68.2% and recall of 46.5%). Thus, precision is not perfect, but we think
that this is a very good basis for continuous link creation and usage. Further-
more, the new approach is applicable also where developers are not particularly
interested in interaction recording. We showed that our new approach outper-
forms IR and purely commit-based linking and is superior to current machine
learning based approaches as well [23]. Clearly, it is interesting to confirm this
with further studies and to study whether this also holds for more structured re-
quirements where IR is typically used. Another important step for applicability
in practice is to investigate the maintenance of links such as [17].

Acknowledgment We thank the students of the projects for their effort.

References

1. Baeza-Yates, R., Ribeiro, B.d.A.N.: Modern Information Retrieval. Pearson
Addison-Wesley, 2 edn. (2011)

2. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., Germán, D.M., Devanbu, P.T.:
The promises and perils of mining git. In: MSR (2009)

3. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping
of information retrieval approaches to software traceability. ESE 19(6) (2013)

4. Briand, L., Falessi, D., Nejati, S., Sabetzadeh, M., Yue, T.: Traceability and SysML
design slices to support safety inspections. ToSEM 23(1) (2014)

5. Cleland-Huang, J., Gotel, O.C.Z., Huffman Hayes, J., Mäder, P., Zisman, A.: Soft-
ware Traceability: Trends and Future Directions. In: ICSE/FOSE. ACM (2014)

6. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Recovering Traceability Links
in Software Artifact Management Systems using Information Retrieval Methods.
ToSEM 16(4) (2007)

7. Ebner, G., Kaindl, H.: Tracing all around in reengineering. IEEE Softw. 19(3)
(2002)

8. Hayes, J., Dekhtyar, A., Sundaram, S.: Advancing candidate link generation for
requirements tracing: the study of methods. TSE 32(1) (2006)

9. Herzig, K., Zeller, A.: The Impact of Tangled Code Changes. In: MSR. IEEE (2013)
10. Hübner, P., Paech, B.: Using Interaction Data for Continuous Creation of Trace

Links Between Source Code and Requirements in Issue Tracking Systems. In:
REFSQ. No. 10153 in LNCS, Springer (2017)

11. Hübner, P., Paech, B.: Evaluation of Techniques to Detect Wrong Interaction Based
Trace Links. In: REFSQ. No. 10753 in LNCS, Springer (2018)

12. Kersten, M., Murphy, G.C.: Using task context to improve programmer produc-
tivity. In: SIGSOFT/FSE. ACM (2006)

13. Kirinuki, H., Higo, Y., Hotta, K., Kusumoto, S.: Hey! Are You Committing Tangled
Changes? In: ICPC. ACM (2014)

14. Konopka, M., Navrat, P., Bielikova, M.: Poster: Discovering Code Dependencies
by Harnessing Developer’s Activity. In: ICSE. ACM (2015)

15. Maalej, W., Kurtanovic, Z., Felfernig, A.: What stakeholders need to know about
requirements. In: EmpiRE. IEEE (2014)

16. Mäder, P., Egyed, A.: Do developers benefit from requirements traceability when
evolving and maintaining a software system? Empir. SE 20(2) (2015)

17. Maro, S., Anjorin, A., Wohlrab, R., Steghfer, J.: Traceability maintenance: Factors
and guidelines. In: ASE (2016)

18. Merten, T., Falisy, M., Hübner, P., Quirchmayr, T., Bürsner, S., Paech, B.: Soft-
ware Feature Request Detection in Issue Tracking Systems. In: RE Co. IEEE (2016)

19. Merten, T., Krämer, D., Mager, B., Schell, P., Bürsner, S., Paech, B.: Do Informa-
tion Retrieval Algorithms for Automated Traceability Perform Effectively on Issue
Tracking System Data? In: REFSQ. No. 9619 in LNCS, Springer (2016)

20. Omoronyia, I., Sindre, G., Roper, M., Ferguson, J., Wood, M.: Use Case to Source
Code Traceability: The Developer Navigation View Point. In: RE Co. IEEE (2009)

21. Omoronyia, I., Sindre, G., St̊alhane, T.: Exploring a Bayesian and linear approach
to requirements traceability. IST 53(8) (2011)

22. Rath, M., Rempel, P., Mäder, P.: The IlmSeven Dataset. In: RE Co (2017)
23. Rath, M., Rendall, J., Guo, J.L.C., Cleland-Huang, J., Mäder, P.: Traceability in

the Wild: Automatically Augmenting Incomplete Trace Links. In: ICSE (2018)
24. Soh, Z., Khomh, F., Guéhéneuc, Y.G., Antoniol, G.: Noise in Mylyn interaction

traces and its impact on developers and recommendation systems. ESE 23(2)
(2018)

	Increasing Precision of Automatically Generated Trace Links
	Introduction
	Background
	Trace Link Evaluation
	Evaluation Projects
	IL Approach Overview
	IR based Link Creation and Previous Studies

	Commit based Link Creation and ILCom
	ILCom
	Trace Link Creation Techniques
	Retrospective Study

	Experiment Design
	Research Questions
	Data Sources
	Source Code in the Git Version Control System
	Requirements as Issues in Jira
	Interaction Recordings

	Gold Standard Creation

	Results
	Answer to RQ1: Comparison of IL and ILCom
	Answer to RQ2: Comparison of ILCom and ComL
	Answer to RQ3: Comparison of ILCom and IR
	Discussion

	Threats to Validity
	Related Work
	Conclusion and Outlook

