

The CoCoME Platform: A Research Note on Empirical Studies in Information

System Evolution, Robert Heinrich, Stefan Gärtner, Tom-Michael Hesse,

Thomas Ruhroth, Ralf Reussner, Kurt Schneider, Barbara Paech and, Jürjens,

International Journal of Software Engineering and Knowledge Engineering, Vol.

25, No. 9-10, Copyright@2015

with permission from World Scientific Publishing Co. Pte. Ltd.

The CoCoME Platform: A Research Note on Empirical

Studies in Information System Evolution¤

Robert Heinrich†,||, Stefan Gärtner‡,††, Tom-Michael Hesse§,§§,
Thomas Ruhroth¶,||||, Ralf Reussner†,**, Kurt Schneider‡,‡‡,

Barbara Paech§,¶¶ and Jan Jürjens¶,***
†Karlsruhe Institute of Technology, Germany

‡Leibniz Universit€at Hannover, Germany

§University of Heidelberg, Germany
¶TU Dortmund, Germany

||heinrich@kit.edu
**reussner@kit.edu

††stefan.gaertner@inf.uni-hannover.de
‡‡kurt.schneider@inf.uni-hannover.de
§ §hesse@informatik.uni-heidelberg.de
¶¶paech@informatik.uni-heidelberg.de
||||thomas.ruhroth@cs.tu-dortmund.de
***jan.jurjens@cs.tu-dortmund.de

Methods for supporting evolution of software-intensive systems are a competitive edge in

software engineering as software is often operated over decades. Empirical research is useful to
validate the e®ectiveness of these methods. However, empirical studies on software evolution are

rarely comprehensive and hardly replicable. Collaboration may prevent these shortcomings. We

designed CoCoMEP ��� a platform for supporting collaboration in empirical research on soft-

ware evolution by shared knowledge. We report lessons learned from the application of the
platform in a large research programme.

Keywords: Software evolution; empiricism; information system; research platform.

1. Joint Research Facilitates Empirical Studies in Software Evolution

Many information systems are operated over decades while facing various mod-

i¯cations, e.g. due to emerging requirements, bug ¯xes, and environmental changes.

In consequence, the software changes continually which is named software evolution.

Supporting software evolution is a competitive advantage in software engineering.

Various methods are available to support diverse aspects of software evolution.

*This work was partially supported by the DFG (German Research Foundation) under the Priority

Programme SPP1593: Design For Future ��� Managed Software Evolution.

International Journal of Software Engineering

and Knowledge Engineering

Vol. 25, Nos. 9 & 10 (2015) 1715–1720

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194015710059

1715

http://dx.doi.org/10.1142/S0218194015710059

However, it is hard to assess the e®ectiveness of these methods and to compare them

due to divergent characteristics. Empirical research in terms of case studies and

controlled experiments is useful to validate evolution methods. Yet, empirical studies

on software evolution are rarely comprehensive (as further discussed in [1]) since

many aspects are needed to study evolution, such as (a) long time-frames of obser-

vation, (b) large amount of artifacts, (c) various types of artifacts, and (d) access to

relevant project data.

We believe it is essential to collaborate by joint research in order to increase

coverage of these aspects. Joint research supports sharing of knowledge and resources

[2] which promises to increase study comprehensiveness (e.g. by considering more

and heterogeneous artifacts from di®erent sources) and e±ciency (e.g. by reusing

artifacts or evolution scenarios). Furthermore, joint research supports study repli-

cation and con¯rmation [3] as research is conducted on a common basis such as tool

infrastructure, or common data or source code. Our goal is to support collaboration

in and replication of empirical studies by joint research based on common evolution

scenarios and artifacts. Existing empirical studies on software evolution are seldom

comparable as they vary in analyzed subjects and execution process. Further, these

studies are rarely reusable as important artifacts (e.g. requirements or context

knowledge) are often not provided to the community. To the best of our knowledge,

there is neither a community-accepted case study for software evolution nor a

common benchmark available. Consequently, a common basis for study collabora-

tion and replication is missing [1].

This research note presents CoCoMEPa ��� a platform for collaborative empirical

studies on information system evolution. It gives an overview of the platform orig-

inally published in [1]. Under a \platform" we understand a comprehensive knowl-

edge base for empirical research that can be exploited and extended by researchers

with di®erent backgrounds and research interests. It provides assistance on diverse

characteristics important for software evolution, e.g. the life-cycle of the system,

comprehensive evolution scenarios, and artifacts in di®erent revisions (Sec. 2).

CoCoMEP is applied for collaboration among several projects within the DFG

Priority Programme Design For Future ��� Managed Software Evolution (SPP1593)

[5]. These projects gathered lessons learned on research collaboration in software

evolution (Sec. 3). CoCoMEP, however, is not limited to SPP1593 but open for reuse

and extension by researchers outside the scope of the priority programme.

2. The CoCoME Platform Supports Joint Research by Standardization

We analyzed related work on empirical research in [1] with regard to collaboration.

The aim was to learn from experiences and to identify the following requirements as

basis for the design of CoCoMEP. R1: the case study must be standardized in terms

aThe term is a combination of Common Component Modeling Example \CoCoME" [4] and \Platform".

Additional information on CoCoMEP is available online http://www.dfg-spp1593.de/cocome.

1716 R. Heinrich et al.

of activities and artifacts. R2: it must enable e®ective collaboration among

researchers. R3: the case must comprise artifacts that correspond to all life-cycle

phases. R4: the evolution process must contain iterations and increments. R5: the

application, problem, and solution domains of the case must be de¯ned, e.g. by using

natural language text or models. R6: tools necessary to replicate the case must be

evaluated.

In a literature review in [1] we examined existing empirical studies on software

evolution. We could not ¯nd a study considering the entire evolution life-cycle. In

addition, neither artifacts nor relations between the di®erent development activities

are comprehensively covered by existing studies. Most empirical studies and their

results are not comparable in terms of domain, size, or complexity. Thus, obtained

results have limited evidence.

According to the requirements, we developed the research platform CoCoMEP

depicted in Fig. 1. On this account, the established CoCoME system [4] serves as the

study subject. We developed examples of change scenarios in information system

evolution, constructed sample activities in system development and operation, and

arranged them in life-cycle form. The interconnected parts of CoCoMEP are

explained in the following.

An Evolution Subject is the amount of artifacts in di®erent revisions that

represent an information system. CoCoME has been set up in a Dagstuhl research

seminar as a community case study for component-based software engineering. We

evolved CoCoME to a study subject on which methods in the context of software

evolution are applied. CoCoME resembles a trading system of a supermarket chain

handling sales. The system implements sales processes at a single store of the chain,

e.g. scanning products or paying, as well as enterprise-wide administrative tasks, e.g.

inventory management. Figure 2 gives an overview of the CoCoME system by il-

lustrating its use cases. CoCoME in general as a community case study balances real-

world relevance with suitability for an academic environment. It enables comparison

between di®erent software modeling and analysis approaches and identi¯cation of

limitations in software evolution research. Detailed description of the CoCoME ar-

chitecture by component-, deployment-, and sequence diagrams is given in [4].

Several variants of CoCoME exist that span di®erent platforms and technologies.

These range from plain Java code and service-oriented frameworks to hybrid cloud

architectures. Furthermore, various development artifacts are available, such as

CoCoME
Variant

Platform Migration

Adding a Web Shop

Run-time Reconfig.

Design-time

Run-time

Evol. Subject Evol. Scenarios Evol. Life-Cycle

Fig. 1. Overview of the CoCoME platform.

ManageExpress-
Checkout

ReviewOrderedProducts

ShowDelivery
-Products

ShowStock-
Reports

Product-
Exchange

ChangePrice

OrderProducts

ProcessSale

Enterprise
Manager

Stock
Manager

Customer

Cashier

Store
Manager

Fig. 2. Overview of the CoCoME use cases.

The CoCoME Platform: A Research Note on Empirical Studies in Information System Evolution 1717

requirements speci¯cation or design documentation, which changed over time.

CoCoME is well suited to serve as evolution subject because the supermarket context

is commonly comprehensible and the complexity of the system is appropriate. As

CoCoME is a distributed system, several quality properties are a®ected by evolution.

An Evolution Scenario describes changes to a certain evolution subject. Based

on CoCoME, we implemented distinct evolution scenarios (S1-S3).

S1: Web Shop Extension: A web shop is added where the customers can order

online and pick-up the goods at a chosen store. This design-time modi¯cation

includes adding new use cases and modifying existing design models. S1 transforms a

closed system (only employees can access) to an open system (customers can accessed

via internet). Hence, various quality properties are a®ected, e.g. privacy, security,

performance, and reliability.

S2: Platform Migration: The enterprise server of the trading system and its da-

tabase are now running in a cloud environment to reduce operating costs of

resources. The introduction of the cloud enables °exible adaptation and recon¯gu-

ration of the system, however, causes new challenges regarding aforementioned

quality properties.

S3: Database Migration: During a big advertise campaign, the performance of the

system may su®er due to limited capacities of the current cloud provider. Migrating

the database from one cloud provider to another may solve the scalability issues,

however, may cause privacy issues. In [6] we sketch privacy-relevant changes in the

cloud context.

An Evolution Life-Cycle integrates activities and their relationships required

to implement evolution scenarios. We developed a set of sample activities typical in

information system evolution and arranged them in life-cycle form (cf. process model

in Fig. 3) to cope with aforementioned evolution scenarios. An iteration in the life-

cycle starts with a change request, e.g. for S1 or S2. Emerging requirements are

elicited and documented. Decisions are made and documented. A static quality

analysis is conducted to identify quality issues at design-time. The design is adapted,

if necessary, and implemented. After deployment, a dynamic quality analysis is

conducted for the running system to identify run-time issues which may result in

automated adaptation (S3) or a new iteration for manual evolution.

Diverse variants of the three parts of CoCoMEP are possible. In principle,

CoCoMEP is appropriate to conduct empirical studies on software evolution as it

satis¯es the aforementioned requirements. R1: CoCoMEP provides standardized

study subject, evolution scenarios, and life-cycle activities. R2: this standardization

Fig. 3. Overview of the Evolution Life-Cycle applied in the DFG Priority Programme SPP1593.

1718 R. Heinrich et al.

of the research platform in conjunction with the community o®ers a structure for

collaboration and study replication (see Sec 3). R3: CoCoMEP comprises activities

and artifacts that correspond to all phases in the system's life-cycle. R4: it covers

iterations and increments in the development process. R5: it provides a concrete

setting to de¯ne the application domain (i.e. supermarket chain), problem domain

(i.e. web-based system) and solution domain (e.g. architecture, code, etc.) of the case.

R6: it supports evaluating the tools necessary to replicate the case, such as imple-

mentation/design languages, operating system, or development environments.

3. Applying the Platform Contributed to Collaboration

among Researchers

CoCoMEP targets researchers dealing with empirical studies on modeling or analysis

approaches in the software evolution context who want to utilize collaboration and

replication capabilities of a community case study and thus increase community

acceptance.

In this section, we discuss an excerpt of the most important lessons learned from

applying CoCoMEP in SPP1593 to give an impression of its use and e®ectiveness.

We list bene¯ts perceived while applying CoCoMEP and potentials for improve-

ment. CoCoMEP proved to be an appropriate knowledge base and supported us in:

(i)Gathering project-spanning understanding. Mapping the diverse development and

operation activities and artifacts speci¯c to the single projects within SPP1593 into

the given life-cycle structure enabled a common understanding of them. Further,

common understanding has been supported by a joint communication and docu-

mentation infrastructure, i.e. mailing lists, media wiki, and SVN repository. The wiki

contains all the information about life-cycle activities and related artifacts to be

shared. We use the SVN repository to share source code as well as con¯guration and

documentation artifacts. Based on the life-cycle and infrastructure it was easy to

identify and solve uncertainties and misunderstandings among participants from

di®erent projects and to create a project-spanning understanding. This is a necessary

foundation for research collaboration. (ii) Identifying common artifacts. Mapping

activities and artifacts into the life-cycle allows for identifying artifacts used by

diverse projects and relations between artifacts. This is another foundation for re-

search collaborations. (iii) Reuse. The life-cycle also allows for reusing activities and

artifacts among the projects. On the one hand, some activities are performed by

multiple projects. On the other hand, the output (i.e. artifacts) of activities associ-

ated to one project is often reused as an input for activities associated to another

project. This contributes to e±ciency and the evaluation of the artifacts and thus the

applied approaches. (iv) Clarifying interfaces between projects. Project-spanning

understanding and knowledge about dependencies between activities and artifacts

supports clarifying the interfaces between the single projects. This leads to distri-

bution of responsibilities and thus results in more e±cient collaborations. (v)

Establishing a technical basis. CoCoMEP contributed to the development of a

The CoCoME Platform: A Research Note on Empirical Studies in Information System Evolution 1719

common technical basis between the single projects. It supported us in developing

tools that interact with each other based on clearly de¯ned interfaces and in con-

¯guring common execution environments which reduces e®ort for the single projects

and eases collaboration and study replication.

Applying CoCoMEP in the SPP1593 context, however, showed some potentials

for improvement. Change history of the artifacts is rather short. Since SPP1593

started in 2012, artifacts still face few evolutionary changes compared to ordinary

repository mining studies for instance. This is caused by the fact that CoCoME is a

research prototype and we do not have the amount of human and ¯nancial resources

involved in real-life development. Nevertheless, as shown by studies in SPP1593,

CoCoME provides a su±cient knowledge base so far for conducting various analysis,

e.g. on use cases, decisions, or monitoring and simulation data. We are con¯dent to

produce a larger change history in the future as the priority programme continues for

three more years and simultaneously the CoCoME system is applied in a growing

number of studies beyond the programme.

4. Conclusion

Based on requirements for collaboration support from related work and a literature

review on empirical studies on software evolution, we developed CoCoMEP. The

platform consists of three interconnected parts ��� an established evolution subject,

related evolution scenarios, and a life-cycle covering activities to address the sce-

narios. Thus, it supports collaboration in and replication of empirical studies as

perceived while applying CoCoMEP in a large research programme. In the future,

the subject CoCoME will be further evolved by new scenarios which may include

parallel evolution and co-evolution of artifacts.

References

1. R. Heinrich et al., A platform for empirical research on information system evolution, in
27th Int. Conf. on Software Engineering and Knowledge Engineering, KSI, 2015, pp. 415–
420.

2. D. I. Sjoberg et al., The future of empirical methods in software engineering research, in
Future of Software Engineering, IEEE, 2007, pp. 358–378.

3. N. Juristo and O. Gómez, Replication of software engineering experiments, Empirical
Software Engineering and Veri¯cation, 2012, pp. 60–88.

4. S. Herold et al., CoCoME ��� The common component modeling example, in The Common
Component Modeling Example (Springer, 2008), pp. 16–53.

5. U. Goltz et al., Design for future: Managed software evolution, CSRD, 2014, pp. 1–11.
6. R. Heinrich et al., Integrating run-time observations and design component models for

cloud system analysis, in MRT, CEUR Vol. 1270, 2014, pp. 41–46.

1720 R. Heinrich et al.

	The CoCoME Platform: A Research Note on Empirical Studies in Information System Evolution∗
	1. Joint Research Facilitates Empirical Studies in Software Evolution
	2. The CoCoME Platform Supports Joint Research by Standardization
	3. Applying the Platform Contributed to Collaboration among Researchers
	4. Conclusion
	References

