
Do Stakeholders Understand Feature
Descriptions? A Live Experiment.

Rumyana Proynova and Barbara Paech

Software Engineering group, Institute for Computer Science, University of
Heidelberg, Germany

{proynova, paech}@informatik.uni-heidelberg.de

Abstract. [Context and motivation] Requirements engineers need feed-
back from stakeholders on planned system features. The simplest way
is to present feature descriptions to the stakeholders and ask for their
opinion. [Problem/question] The feedback is only valid if the stakehold-
ers’ conception of the features represents the actual features reasonably
well. Due to the highly abstract nature of software, it is possible that
there is a mismatch between the stakeholders’ idea of the feature descrip-
tion and the actual feature the software engineers intend to implement.
[Method/results] We conducted a live experiment during the RefsQ 2012
conference. We used a questionnaire to measure the mismatch between
the participants’ understanding and liking of a list of software features
and the implementation of these features, shown as a screencast of a
system prototype. We found a correlation between the degree of un-
derstanding of a feature and the liking of that feature. There were no
significant differences between features presented in different formats.
[Contribution] This experiment shows first insights into the factors which
contribute to a stakeholder’s understanding of a feature description, and
to his/her satisfaction with a software which contains these features.

1 Introduction

It is not feasible to involve end users in requirements elicitation in all projects,
even though this could lead to higher quality requirements. Factors like the un-
availability of end users (for example in global software development projects or
off-the-shelf software products with no designated end users) or limited budget
and resources, as well as company culture, can dictate that the requirements for
the software are derived from other sources. In order to ensure that these require-
ments are aligned with the needs of the end users, the requirements engineers
can let the users validate the requirements.

The constraints which preclude resource-intensive elicitation techniques are
likely to also preclude similarly resource-intensive validation techniques. A tech-
nique, which produces adequate results but requires a comparably low level of
effort, can enable early validation in projects where currently end users are not
involved until the very late stages of the project such as testing or even roll-out
of a completed product. Our research focusses on defining such a technique. The



experiment described in this article is part of the research needed for the creation
of this technique.

The technique is based on the well-known marketing concept of using a ques-
tionnaire to measure customers’ expected satisfaction with product features [11].
Such a questionnaire lists a number of features and the prospective customer
indicates his or her expected satisfaction on a Likert scale. While marketing
literature provides research on using this technique, it cannot be used for soft-
ware products without substantial extensions. The abstract nature of software
and the often intricate dependencies between features make it difficult for the
questionnaire respondent to give meaningful ratings for the individual features.

While the questionnaire technique has some distinct advantages, such as mak-
ing efficient use of the time of the requirements professional (as there are no sep-
arate interviews with each user) and delivering quantitative data, it also has its
drawbacks. The communication between end users and requirements engineers
is very limited, and there is no convenient channel for inquiries, clarifications
and discussion. All information a user gets about a feature is its description. If
users misunderstand a feature description, they may approve a feature they do
not need, or declare that they need a feature which is in fact useless. They may
also have ideas about how to improve the features, but may not inform the re-
quirements engineers, because they are unsure about the proper communication
channel.

For the communication between the requirements engineer and the end user
to function properly, it is important that the requirements engineer asks the
right questions, the users understand them in the way they were intended, and
answer truthfully. This article describes an experiment which we conducted in
order to gain more insight into the first two points. Our experiment does not
address the possibility of users intentionally giving wrong answers.

In the next section, we describe research related to our experiment. In sec-
tion 3, we describe how we designed our questionnaire and how we conducted
the experiment itself. Section 4 describes our hypotheses, our results, and some
explorative conclusions we made in addition to the predefined hypotheses. The
last section presents our intended future work on this topic.

2 Related Work

Our experiment uses a questionnaire for measuring the users’ satisfaction with
a product. There are several techniques in marketing for similar types of anal-
ysis. Prominent ones are concept testing [10], conjoint analysis [7], importance
performance analysis [9] and SERVQUAL [1].

None of these methods can be used directly with software features. Con-
cept testing presumes that a customer is able to make a buying decision based
on an advertisement presented on a magazine page. This is useful for products
like toothpaste, which only have a few simple features, but is not feasible for
software products. Conjoint analysis requires a customer to make pairwise com-
parisons between each possible level of many factors, for example a product can



have the factors product warranty (levels: 1 year, 2 years) and support options
(levels: telephone hotline, online ticket submission) and the customer has to
rank all four possible combinations. As the number of comparisons to be made
grows exponentially with the number of factors present, it is not suitable for
a products with multiple features. Importance-performance analysis needs eas-
ily quantifiable features, for example fizziness for a soda. SERVQUAL includes
a hierarchical set of service qualities, which can not be mapped to a software
product without changes. All four of these techniques assume that the name of
a feature conveys enough information about it to be perfectly understandable
for a customer, and the studies which use these methods are done on products
with simple, well-known features where understandability is not a problem.

Our research is based on software features. Software features are an impor-
tant part of how users understand software. They are often used in software
specifications, especially in the context of software product lines. [2], [12]. Other
types of specification can often be broken down into individual features, the way
we do this in the experiment described here - we produce our features from a
software specification written as user tasks [8] and user stories [3].

3 Experiment Design

The experiment was conducted during the empirical track of the RefsQ 2012
conference, with 56 conference visitors participating. Each participant received
a questionnaire and was asked to answer the first part of it. This part contained
software feature descriptions and questions about them. Then the participants
were shown a screencast of a software application implementing the features from
the first part, and had to answer questions about the feature implementation.

For the experiment, we created a software requirements specification and
a software prototype implementing the specification. We chose to implement a
personal finance software product for managing receipts. This choice had several
advantages. First, this application could be made simple enough to cover the
complete specification of functional requirements in the limited time available for
the experiment. Second, this class of software product is not especially common,
and we expected most of the participants to not have made experience with
similar software products before. This reduced the chance of preconceptions
formed through contact with similar software products to skew the results. Third,
using this software does not require any special knowledge. Had we chosen a
software supporting a process which is only performed in certain professional
fields or hobbies, we would have had to control for the participants’ experience
in these fields or hobbies.

We used the features from our requirements specification for the features
description in the questionnaire. We recorded a screencast of the first author
using the software, and used this recording for the experiment. The questions in
the questionnaire were derived from our research goals.



3.1 Research Goals

The purpose of this experiment was explorative research. We wanted to get first
insights into how users understand feature descriptions and how a requirements
engineer can create a questionnaire which reflects the true future satisfaction
of an end user with given software features. Such an instrument can never be
perfectly accurate, but we want to achieve a degree of accuracy high enough for
it to be used in decision-making about which features should be implemented in
a software product.

We had three main research goals. We wanted to a ) understand to what
degree an end user’s satisfaction with an implemented feature correlates with
a set of factors we assumed are connected to satisfaction, most importantly to
what degree self-predicted satisfaction correlates with actual satisfaction; to b
) to find further factors, beside the ones we assumed in the previous goal, which
could possibly play a role in self-reported expected satisfaction; and to c ) to
test whether different feature presentation formats influence the understanding
of features.

Correlation of end user satisfaction with proposed factors While mar-
keting theory often works with complicated concepts to describe satisfaction, a
questionnaire study has to use simple, universally understood concepts in a ques-
tionnaire, else it risks getting incomparable results due to a confusion of what is
being asked. For this experiment, we chose one of the simplest concepts possible:
liking. As we are interested not only in knowing self-reported liking, but also in
how accurate the answers are, we also included questions about the understand-
ing of what a feature is about. A misunderstood feature will lead to answers
based on a false conception of the feature and therefore reduce the usefulness of
a questionnaire. We asked about the liking and understanding both before and
after the participants saw the feature implemented in a software demonstration.
We formulated multiple hypotheses about the possible relation between how well
participants believed they have understood a feature before and after implemen-
tation, and how much they liked it before and after implementation. Below is a
list of these hypotheses, with a possible explanation for each hypothesis given in
parentheses.

Hypothesis 1 Accurate understanding of an implemented feature is related
to a feeling of understanding it before seeing it implemented. (Users know
whether they have understood a feature).

Hypothesis 2 Liking of a feature before seeing it implemented is related to a
feeling of understanding it before seeing it implemented. (Users like concep-
tions they understand).

Hypothesis 3 Liking of a feature after seeing it implemented is related to a
feeling of understanding it before seeing it implemented. (Users like features
which were clear from the beginning).

Hypothesis 4 The deviation in liking a feature before and after seeing it im-
plemented is negatively related to a feeling of understanding it before seeing



it implemented. (The better users have understood a feature, the better
they can predict whether they will like it. Alternatively, the causation could
be reversed: The more the users like a feature, the better they are able to
understand it with a short description).

Finding further relevant factors Unlike the other research goals, this one
was based on qualitative research. We collected feedback about what participants
thought influenced their answers to the questionnaire. There were no preformu-
lated hypotheses for this goal.

Different feature presentations Software requirements can be documented
and represented in multiple ways. Some of these are not suitable for use in a
questionnaire for non-technical users. We considered several formats which were
more or less self-explanatory. As we were concerned with a clear understanding
by a user who does not have the possibility to ask for clarification, we decided
to compare formats which are more or less close to a user’s point of view. We
included user stories and user tasks in our questionnaire.

We based our user stories on the guidelines given by [3]. They represent the
type of requirements documentation used in modern agile software development
approaches such as Scrum. Each user story is a short description of what the
user can do with the system, which is supposed to be documented on a separate
card and used primarily for release planning and developer task specification.
A user story is always written from the point of view of the end user, it is
closed and supports a user achieving a goal. The granularity is determined by
the development process: user stories do not contain details, so each of them
must be small enough to be sufficiently described in one or two sentences, and
to be implemented by a developer within a single sprint. Each user story should
be independent of other user stories. For the survey, we use each user story as a
separate feature. While a user story card can contain constraints (non-functional
requirements) or acceptance tests, we do not include these in the survey, as they
do not have a direct analogue in the other two approaches.

For user tasks, we use the guidelines proposed by [8], specifically the so-called
”task and support” approach. In this approach, the subtasks are combined with
proposed solutions which can be implemented in the system. User tasks are
written close to a user’s point of view. Each task is based on a goal the user wants
to achieve. Subtasks do not focus on either user or system; they ”describe what
the user and the computer do together” on a domain level. They are written in
the imperative mood, to hide who does what. The solutions may specify what the
system does, but this is not always the case. User tasks do not provide an ordered
sequence of steps the way use cases or scenarios do. However, they package small
substeps into bigger units, the tasks. Each task has one user goal and should
have closure. This means that a task provides more context information to the
user than formats which record each subtask-sized requirement independently.
For the purposes of our survey, we define each solution from the Task & Support
approach as a product feature.



We formulated several hypotheses on the differences which formats can cause
in the answers.

Hypothesis 5 The closer a format is to the user’s point of view, the better
the feeling of understanding it before seeing it implemented. (Users feel they
understand feature descriptions better when they are described from their
point of view).

Hypothesis 6 The closer a format to the user’s point of view, the better the
understanding after seeing it implemented. (Users understand features better
when they are described from their point of view).

Hypothesis 7 The closer a format is to the user’s point of view, the less de-
viation is there in liking the feature before and after seeing it implemented.
(Users can better predict their liking of a feature when it is described from
their point of view).

3.2 Features

The requirements specification used for the experiment contained fifteen features.
The complete specification in the user task format is shown in section 7. We tried
to make the specification as realistic as possible. We did not polish it to be the
best specification we can produce, but included features which we assumed were
not very good from the end users’ point of view. This was done in order to have
variability in the features’ liking, as we feared that, if all users like all features
uniformly, we would not be able to see any effects. We also included a ”double”
feature, where the users had to rate two either-or alternatives, none of which
were very user-friendly. The reason was that we wanted to force the participants
to dislike at least one feature, again to have more variability. Also, the fact
that one feature excluded the other was unusual (there was no obvious technical
reason why both could not be implemented at the same time), and we assumed
that some participants would be misled to believe that both features will be
included in the software allowing the user to choose between them at runtime.
We hoped that this would create a situation where users believe that they have
understood the feature before seeing the implementation, but recognize that
their understanding was not accurate after seeing the screencast.

Beside variability in liking, we also wanted to create variability in understand-
ing. For this, we knowingly kept some features ambiguous, omitting important
details. We feel that this made the situation more realistic. First, the literature
on user stories and user tasks suggests that these descriptions should not contain
very detailed information in order to prevent overspecification [8], [3]. Second,
in industry projects we have been involved with, we have often seen features
described at the same or at a more abstract detail level as the one we used, but
never at a lower, information-richer detail level. Thus, including intentionally
ambiguous feature descriptions made the experiment situation more realistic.

We developed a GUI protoype based on our specification and created a real-
istic test data set including actual receipts. The prototype was created in Java
and had only rudimentary functionality, but, when used with the test data set,



it could create a convincing illusion of actually having the functionality de-
scribed in the specification. We created screencasts of one experimenter using
the features described in the specification, accompanied by an audio commen-
tary explaining what is happening on the screen. These screencasts were shown
to the participants during the experiment, as explained in the next section.

3.3 Questionnaire

The questionnaire consisted of four parts. The participants were given time to
answer parts one and two, then asked to wait for a software demonstration.

Part one contained general demographic questions. Participants were asked
about their expertise in requirements engineering and their experience with dif-
ferent requirements representation formats. The data from these answers is not
evaluated for any of the hypotheses listed in the research goals; rather, it is used
to describe relevant demographic factors of the experiment participants.

In part two, the participants were asked to read a requirements specifica-
tion and answer questions about the features it contained. There were two types
of questionnaires, which differed in this part. One type had user stories, each
printed in a simple box without a number, representing a story card. The sec-
ond type had two user tasks formatted as described in [8] with each solution
containing a single feature. The wording of all features was equivalent in both
formats except for rules prescribed by the format.

For each feature, participants were asked to answer two questions:

Question 1 ”My conception of the way this feature will be implemented is ...”,
followed by a five-point Likert scale labelled clear/vague/non-existent (All
Likert scales used in this questionnaire were five-point with only the first,
third and fifth point labelled). This question was used to measure the feeling
of understanding before seeing the implemented feature.

Question 2 ”I think I will ... this feature when it is implemented”, followed by
a Likert scale labelled like/be indifferent/dislike. This question was used to
measure liking before seeing the implementation.

These two questions were followed by a prioritization task. We have not yet
completed the evaluations based on the data from the prioritization, so we do
not report on it further in this article.

In part three, the participants again were shown each feature, with three new
questions per feature. They were instructed to wait for a video demonstration
of the features before answering the questions. Each demonstration contained
two or three features, so that features which were solutions to the same task as
defined in the user tasks were bundled in the same demonstration. Participants
were given time to answer the questions about all features in a demonstration
before the next demonstration was presented.

Question 3 ”The feature corresponds ... to my previous conception”, with a
Likert scale labelled very well/somewhat/not at all. This question was used
to measure accurate understanding.



Question 4 ”The implemented feature differs from my previous conception in
the following ways:”, followed by empty space for a freely formulated answer.
This question was used for generating ideas for other relevant factors (second
research goal).

Question 5 ”I ... the feature the way it is implemented now.”, followed by a
Likert scale labelled like/be indifferent/dislike. This question was used to
measure liking of a feature after seeing the implementation.

Part four included one open-ended question, and a feedback section. In the
question, we asked the participants to give us suggestions on how they would
have improved the feature descriptions to improve their understandability. In
the feedback section, we asked for freely-formulated feedback on any part of the
experiment, the conduction, and the questionnaire. The answers from this part
were used to generate new ideas for relevant factors (second research goal), as
well as for recognizing possible threats to validity, and as information on how to
structure a follow-up experiment.

4 Results

We used the statistical language R to evaluate the hypotheses stated in section
3.1. We could not confirm the hypotheses about the differences in the description
formats, but found a good correlation in most hypotheses about the relations
between the understanding and liking of features before and after seeing their
implementation. The qualitative analysis of the open-ended questions as well as
the feedback the participants gave during a discussion session at the conference
led to interesting new ideas which we will explore in further experiments.

4.1 Correlation of End User Satisfaction with Proposed Factors

To this research goal, we calculated a correlation coefficient for hypotheses 1
through 4. As this is not a significance test for a parameter, we can not offer a
significance level; rather, we can say that the higher the absolute value of the
correlation coefficient, the more connection there is between the two phenomena.
The results are listed in table 1. Figure 1 gives an overview of the correlations
we found.

Q5 - Q2: liking difference

Q2: liking before video

Q5: liking after video

Q1: accurate understanding

Q3: feeling of understanding

0.37

0.39

0.08

-0.23

Fig. 1. Concepts measured and their correlations

We found that most hypotheses of this research goal, with the exception of
hypothesis 3, were confirmed. The correlation coefficients were clearly different
from zero (so the two factors are related), and the sign direction was as the



Hypothesis Questions Corre-
lation

Accurate understanding of an implemented feature
is related to a feeling of understanding it before see-
ing it implemented.

Q 1 and Q3 0.37

Liking of a feature before seeing it implemented is
related to a feeling of understanding it before seeing
it implemented.

Q 2 and Q 1 0.39

Liking of a feature after seeing it implemented is
related to a feeling of understanding it before seeing
it implemented.

Q 1 and Q5 0.08

The deviation in liking a feature before and af-
ter seeing it implemented is negatively related to
a feeling of understanding it before seeing it imple-
mented.

(Q 5 - Q 2) and Q1 -0.23

Table 1. Hypotheses about the connections between the concepts

hypothesis predicted. We conclude that a clear conception is an important factor
in the participants’ answers to a questionnaire with software feature descriptions.
We propose the tentative interpretation that people tend to be unsure about
what answer to give for a feature they can not picture clearly. We cannot claim
that the data confirms this interpretation; we need more research, not based on
pure correlation, to find out whether this interpretation is correct.

4.2 Finding Further Relevant Factors

We are interested to know what influences the answers the participants give to
questions such as ”Do you like this feature” and also their ability to envision
how a feature will be implemented. The discussion and the answers to the open
questions provided us with ideas about such factors.

Participant has encountered feature before. We chose an unknown soft-
ware product, in order to avoid the situation that participants have preconceived
notions about features based on their previous experience with such software.
The discussion made us realize that this effect can emerge not only on the level
of a software application, but also on the level of a single feature. The partici-
pants reported that they had a good understanding of features which they had
previously encountered in unrelated software products, and that they had dif-
ficulty creating a clear concept of features specific to our software. The data
confirms this claim: the features with the highest arithmetic mean in the answer
to question 1 were the ones related to printing (feature 14, µ = 4.75)1, exporting
a report (feature 15, µ = 4.44) and saving data in a file (feature 7b, µ = 4.16).

1 As the results are measured on a five point Likert scale, the minimum possible score
is 1, the maximum possible score is 5



This functionality is common in many types of software, and probably most of
our participants have encountered it before.

Participant cannot imagine a good use for the feature. This was a com-
ment left by one participant in the feedback part. He or she claimed that it
was very hard to build a clear conception of the feature when he or she did not
know why it could be useful or what they would want to use it for. This is an
interesting comment which is in line with the recognized importance of ratio-
nale in requirements engineering [4]. In a follow-up experiment, we will include
questions designed to measure the influence of this factor on the understanding.

Participant has no emotional attachment to the software product. This
was suggested by a participant who claimed that he or she marked the ”indif-
ferent” option for all features not because of the relative merit of the feature
as compared to other features in the description or to other possible features
implementing a similar functionality, but because he or she found the software
very ”boring” and was indeed indifferent to anything which had to do with the
software product we presented. This finding is in line with results of marketing
research. First, modern theories of consumer satisfaction agree that satisfaction
has both an emotional and a rational dimension. We chose to ask a single (ex-
pected) satisfaction question in this experiment, and formulated it using a word
associated with emotions: like. It is possible that another formulation, such as
one using a word associated with rational utility like useful, would have pro-
duced a different result at least from this user. However, marketing literature
emphasizes that a customer should create an emotional connection to a product
for satisfaction (as made popular by the AIDA principle - a customer’s relation
to a product starts with simple Attention, but it has to include Interest and
Desire before they Act on it [5]), so maybe, while a rational formulation of the
question could have produced different results, they would not necessarily have
reflected the user’s satisfaction well enough. This is an interesting connection we
plan to research in more depth in future experiments.

Suggested improvements to feature presentation At the end of the ques-
tionnaire, we asked the participants to leave their assumed role of end users and
reflect from the viewpoint of requirements specialists. We asked them to give
us suggestions on how to improve the feature descriptions in order to achieve
a better understanding and more accurate answers about the expected satis-
faction. We received many suggestions, some of them given by more than one
participant. We agree that all these suggestions have the potential to increase the
understanding, but our background is a specific situation: a project with limited
resources in an early phase of requirements elicitation and validation. Thus, we
evaluated the suggestions on two criteria: the potential for increasing the users’
understanding and the feasibility of a project team creating the suggested arte-
facts in this project phase. We will do further research on the suggestions which
scored high in both dimensions.



Participants’ suggestions for individual features While evaluating the
answers to the open-ended questions, we observed that the participants often
offered suggestions for improving a feature, or at least could articulate what
they dislike in a feature. Without receiving any specific guidance, they often
made remarks which could be clearly assigned to the desire for a different user
interface or different functionality, and they made clear what they would like to
see instead of our solution. This effect was especially strong in features which
were intentionally designed to be user-unfriendly, but it also existed in other
features. The users even noticed potential problems which we had not noticed
in our specification, but which sounded like true problems (as compared to the
desire to have something in a different way without being objectively better) and
could be solved without much additional development effort (in the case that
the application was actually implemented).

While we are aware that our participants were experienced software engi-
neers and thus can be expected to come up with such suggestions at a higher
rate than the general population, the suggestions they had were often simple,
interaction-specific changes which are not beyond the reach of users without
a background in software engineering. For example, a frequent suggestion was
that the report should be exported in common office formats, such as Word of
PDF. Other suggestions showed that the participants were evaluating the fea-
tures from the point of view of a user and not of a software engineer, for example
the frequent suggestion that the text recognition should function reliably enough
that the user does not have to confirm and correct the results. While this is a
very understandable desire of a user, we expect software engineers to consider
technology limitations before writing such a suggestion. We found no indication
that such limitations had been considered, except for one participant who did
not suggest perfect recognition, but instead suggested that the software displays
reliability numbers (how confident it is that a given recognized text string is
correct). Thus, we expect users without experience in software engineering to
be able to give similar feedback, even though we expect them to have a lower
suggestion rate and a lower ratio of useful to infeasible feature change sugges-
tions. This expectation has yet to be confirmed in future research before it is
incorporated in our technique.

4.3 Different Feature Presentations

One of our research goals was to compare the liking and understanding between
features described in different formats. The used formats were rather similar in
their degree of closeness to the users’ point of view, but differed in the amount
of context offered, with user tasks bundling related features together and con-
taining additional information per task, while the user stories were represented
on unconnected ”cards”. Thus we expected to see differences between the two.

We did two comparisons in parallel. The first one was a straightforward
t-test of the arithmetic mean calculated separately for both types of feature
description. The second one was an ANOVA test, which, with only one pair of
treatments, resulted in a simple t-test for the variance of both distributions [6]. In



the following, we call the participants who answered the user task questionnaire
user task group and the participants who answered the user story questionnaire
user story group.

Table 2 shows the exact formulation of our hypotheses. The column Question
contains the number of the question which was used for evaluating the hypoth-
esis. We evaluated by comparing the answers to this question given by the two
groups. The last hypothesis included building a difference of the answers of two
questions and comparing the mean and the variance of the difference. None of
the hypotheses could be confirmed at a significance level of 5 %, neither when
comparing the means nor when comparing the variances.

Hypothesis Question Result
The closer a format is to the user’s point of view, the better
the feeling of understanding it before seeing it implemented.

Q 1 not con-
firmed

The closer a format to the user’s point of view, the better
the understanding after seeing it implemented.

Q 3 not con-
firmed

The closer a format is to the user’s point of view, the less
deviation is there in liking the feature before and after seeing
it implemented.

Q 2 - Q5 not con-
firmed

Table 2. Hypotheses about different feature presentations

We could not confirm any of the hypotheses we created for this research goal.
Our conclusion is that the format in which feature descriptions are represented
does not matter for the understanding or the liking of features, at least when we
compare user tasks to user stories. The richer context of user tasks does not seem
to lead to a better understanding. In the future, we plan to research the same
hypotheses, but to include a format which is far removed from the users’ point
of view, for example sentence templates. The templates described e.g. in [13]
begin with ”The system shall” and continue to describe what the system does,
instead of what the user does using the system.

4.4 Threats to validity

Conclusion validity We identified two possible threats to conclusion validity.
First, we are not aware of any objective measures for the variables we measured,
so we had to rely on self-reporting. Second, we ran a large number of hypotheses
on the same data set. This is problematic for confirming a theory, as it lowers
the actual significance level, but we used significance tests only for exploratory
research and do not claim that the results are conclusive.

Internal validity The quality of the instruments we used for our experiment
can also have compromised our experiment validity. First, users may have mis-
understood questions due to ambiguity. We tried to counter this by presenting
the questionnaires to coworkers not involved in the project and asking them



whether they understood the questions the way we intended them. Second, we
used screencasts of the software. The users’ true judgement of features may have
been incomplete, because they did not work with the software themselves.

Construct validity The questions we asked may not be best suited to measure
the concepts of understanding and liking. For example, some users may have
found it hard to answer whether their understanding had been accurate, as they
might have had difficulty remembering how they imagined the features before
the screencast.

External validity The most serious problem with our experiment is that the
participants were software engineering experts and not typical users with non-
technical background. The situation we used in the experiment was also not
perfectly realistic. The users did not know why they should use the software.
The feature descriptions may also not represent user stories well enough. We
created them as tasks first and ”translated” them into user stories. It is possible
that requirements written after user story principles would have had a different
content or granularity.

5 Conclusions and Future Work

Our experiment is based on the assumption of a certain project situation - the
need to validate features with end users who were not involved in the feature
elicitation, under limited resources. We propose that in this case, a questionnaire
can be used for the validation, and the experiment aimed at finding out how
accurate such a questionnaire can predict the users’ future satisfaction with the
software. We had three main research questions. Two of them were based on
assumptions we made, and tried to confirm a number of hypotheses related to
each assumption.

We could confirm almost all hypotheses related to the assumption that the
ability to build a clear conception of a future implementation based on just a
feature description has a strong influence on the answers to an expected satisfac-
tion questionnaire. We plan to continue research focussed on this understanding
and ways to improve it, in order to reduce the undesirable influence of low un-
derstanding on the rating of features on a scale for expected satisfaction.

We could not confirm the hypotheses related to the assumption that the
feature description format has an influence on the answers to an expected satis-
faction questionnaire. This finding has important consequences for our proposed
technique: if every format is understood well enough, the technique can be used
in projects employing any format without the need to translate the requirements
to a specific format suited to the technique.

The open-ended questions as well as the feedback section allowed us to find
other possible factors influencing the accuracy of self-reported satisfaction ex-
pectation. We intend to measure the influence of these factors in future research.



The future research questions mentioned above will be addressed in a future
experiment, conducted with university students without a software engineering
background. The design of the new experiment will be altered in order to measure
the effects we did not measure in this experiment, especially the ones we found
suggested in the open-ended questions and the written and verbal feedback.
It will also contain the old questions, so it will provide confirmation for the
findings already presented here. The use of a different demographic composition
will address some of the threats to validity discussed in the previous section.

6 Acknowledgements

We thank the RefsQ organizers and especially the empirical track chair for giving
us the possibility to conduct this experiment. We also thank all RefsQ partici-
pants who participated in our experiment.

The experiment is part of the project VaREMed (Value based requirements
for medical software), funded by the Deutsche Forschungsgesellschaft.

References

1. Buttle, F., SERVQUAL: review, critique, research agenda, European Journal of
Marketing, vol. 30, issue 1, MCB UP1996

2. Clements, P. and Northrop, L., Software product lines, 2001, Addison-Wesley

3. Cohn, M., User stories applied: For agile software development, 2004, Addison-
Wesley

4. Dutoit, A.H. and McCall, R. and Mistŕık, I. and Paech, B., Rationale management
in software engineering, 2006, Springer

5. Ferrell, O.C. and Hartline, M, Marketing strategy, 2005, Thomson South-Western

6. Freedman, D. and Pisani, R. and Purves, R., Statistics, 2007, W.W. Norton & Co

7. Giesen, J., Volker, A., Requirements interdependencies and stakeholder prefer-
ences, Proceedings of the IEEE joint international conference on requirements en-
gineering, IEEE 2002

8. Lauesen, S., User interface design: a software engineering perspective, 2005,
Addison-Wesley

9. Martilla, J. and James, J., Importance-performance analysis The journal of mar-
keting, JSTOR 1977

10. Moore, W., Concept testing, Journal of business research, vol.10, issue 3, Elsevier
1982

11. Oliver, R.L., Satisfaction: A behavioral perspective on the consumer, 2010, ME
Sharpe Inc

12. Ruhe, G. and Saliu, M.O., The art and science of software release planning, IEEE
software vol. 22, issue 6, 2005

13. Rupp, C., Requirements Engineering und -Management, 2009, Hanser



7 Appendix: Feature descriptions as user tasks

Task 1 Digitize receipt
Start: The user has received one or more receipts

End: The data from the receipts are archived

Subtasks Solution

Import receipt

1 The system imports a picture of the receipt.

2 The system makes it easy to prepare the picture for recog-
nition.

3 The system recognizes the text in the picture.

4 The system guesses a single tag and applies it to each
expense item. The user doesn’t predefine any tags.

Check and correct
receipt data

5 The system allows the user to change any part of the
recognized content in a receipt.

6 The system allows the user to change the tag for each
expense item separately.

Archive data

7a) Option 1: The system archives the data on the servers
of the system vendors (cloud storage). No local saving is
possible. All data is saved automatically.

7b) Option 2: Instead of cloud storage, the system archives
the data locally. The user has to trigger the saving.

8 The system offers export of the receipt data.

Task 2 View expenses report
Start: The user needs information on expenses

End: The relevant information has been viewed and possibly
printed.

Subtasks Solution

Select the input for
the report

9 The system offers the user to select the receipts to be
used in the report.

10 The system offers several search and filter options for
finding relevant receipts in the receipt list.

11 The system offers templates for different types of report.

12 The system allows the user to input parameters for the
report, e.g. a month for a report which shows expenses for
a given month.

Produce report

13 The system processes the data needed for the report and
shows onscreen a report in a print-friendly layout.

14 The system allows the user to print the report.

15 The system allows export of the report data.


