
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Electronic version of an article published in Opdahl, A. L.; Pohl, K.; Rossi, M. (Hrsg): 
Proceedings of the Sixth International Workshop on Requirements Engineering: 
Foundation of Software Quality (REFSQ'00), Reihe: Essener Informatik Beiträge Band 
5, pp. 99-112 
 
Copyright © [2000] Universität Duisburg-Essen 
 
http://www.refsq.org/ 



 Supporting Evolution: Using Rationale in
Use Case Driven Software Development

Allen H. Dutoit1 and Barbara Paech2

1Technische Universität München, Institut für Informatik, D-80290 Munich, Germany
dutoit@in.tum.de

2Fraunhofer Institute for Experimental Software Engineering, D-67661 Kaiserslautern, Germany
paech@iese.fhg.de

Abstract. The requirements specification–as outcome of the requirements en-
gineering process–falls short of capturing other useful information generated dur-
ing this process, such as the justification for selected requirements, trade-offs
made by stakeholders, and alternative requirements that were discarded. In the
context of evolving systems and distributed development, this information is es-
sential. Rationale methods focus on capturing and structuring this missing infor-
mation. In this paper, we propose an integrated process for capturing require-
ments and their rationale, discuss its tool support, and describe planned experi-
ments to evaluate this process. Although the idea of integrating rationale methods
with requirements engineering is not new, few research projects have focused on
the use of rationale during later phases to support the evolution of the system un-
der development.

1 Introduction
The requirements engineering process aims at eliciting, negotiating, specifying, vali-
dating, and managing the requirements of a system under construction. The main prod-
uct of this process is the requirements specification, which contains precise descriptions
of the system and of its environment. The requirements specification is then used as an
input for the design, implementation, and testing processes. It aims to be complete, cor-
rect, and clear for facilitating the construction of the “right” system. However, the re-
quirements specification does not contain other useful knowledge generated during the
requirements engineering process, such as the justification for the selected require-
ments, the trade-offs made by stakeholders, and the alternatives that were discarded.

Rationale1 methods aim at capturing, representing, and maintaining records about
why developers have made the decisions they have [4]. Rationale includes the problems
developers encountered, the options they investigated, the criteria they selected to eval-
uate options, and, most important, the debate that lead to making decisions. Rationale
can serve two different purposes: support negotiation and capture additional informa-
tion. By making explicit the main decision making elements, rationale facilitates nego-
tiation among stakeholders by systematically clarifying the possible options and their
evaluation against well-defined criteria. By capturing rationale, stakeholders can later

1. Historically, much research about rationale focuses on design and, hence, the term design ra-
tionale is most often used in the literature. Instead, we use the term rationale to avoid confusion 
and to emphasize that rationale models can be used during all phases of development, including 
requirements engineering.



examine the justification of certain decisions, for example, when revising the system as
a consequence of evolving requirements.

The application of rationale methods to requirements engineering or, more generally,
to software development, is not new. In requirements engineering, several research
projects have studied the use of rationale methods to improve elicitation [21], support
scenario analysis [18][19], and support negotiation and improve shared understanding
[2]. In software engineering and in engineering design, general methods have been pro-
posed to capture rationale as a graph of issues [6][14]. Many research efforts have fo-
cused on supporting negotiation, decision making, and the capture of rationale. It has
generally been assumed that capturing rationale is beneficial to the later phases of de-
velopment, however, few have investigated the actual use of rationale information, for
example, when revising requirements decisions. 

In this paper, we propose a process for capturing and maintaining rationale in use
case driven software development. Our goal is to capture rationale for supporting the
evolution of the system and its requirements. Capturing rationale during requirements
is attractive given that requirements errors and requirements changes are the most costly
during development. Moreover, attaching rationale with requirements information, in
particular with use cases, can have a high impact on all phases of development given
that use cases are used throughout development. We are interested in investigating the
following questions:

1. How should rationale be captured during requirements?
2. How is rationale of requirements used downstream?
3. Which subsets of this information are useful when revising the system or its

requirements (and which are not)?
4. How should this information be structured and presented to the developer?

We investigate these questions using an iterative and experimental approach. First, we
devised a process to answer question 1. Presently, we are developing a tool to support
this process. This tool also gives an ad-hoc answer to question 2. The tool will be used
in Fall at the Technical University Munich by students developing a large software sys-
tem during a 4-month project course. It will also allow to monitor the use of the captured
rationale in the course in order to answer questions 2 and 3. Based on the experiences
made we will improve our answers to questions 1 and 4. 

This paper describes our concepts and plans for the experiment. In Sect. 2, we de-
scribe the use case driven approach to requirements engineering, which emphasizes
clear relationships between user tasks, use cases, scenarios, and system services. In
Sect. 3, we describe a general process to capture rationale. As in other methods, we cap-
ture and represent rationale as a graph. However, we propose that, in addition, discus-
sions and rationale capture are monitored and guided by a facilitator with the intent of
eliciting additional information and improving its structure. We argue that this approach
can not only improve the quality of requirements decisions but also the quality of deci-
sions made later, such as during system design or changes to requirements. In Sect. 4,
we describe the integration of the processes for capturing requirements and rationale. In
Sect. 5, we sketch the use cases for the envisioned tool. In Sect. 6, we describe the ex-
perimental context in which we plan to evaluate these processes and their tool support.
In Sect. 7, we conclude with a discussion of related work and future research directions.



2 Capturing Requirements as Use Cases
Use cases are a popular addition to object-oriented software development. They have
first been proposed by Jacobson [9] and are now part of the (Rational) Unified Software
Development Process [10]. However, there is no single accepted definition of use case.
Two major issues are the relationships of use cases to goals and to scenarios [5][22]. In
the following, we propose our definitions for these concepts and we describe their rela-
tionship with our proposed requirements engineering process.

2.1 Concepts
Actors are external entities that interact with the system. Examples of actors include a
user role (e.g., a bank customer) or another system (e.g., a central database).

A Scenario is a concrete sequence of interactions between an actor and the system.
Because of their exemplary nature, scenarios are particularly useful for the elicitation of
requirements and often serve as a blueprint for a use case. They can also be used as test
cases for use cases.

A Use Case is a general sequence of interactions between an external actor and the
system. A use case, thus, describes a collection of scenarios. Use cases are used to cap-
ture the functional requirements of the system. In contrast, functional requirements in
structured methods are captured as System Services. Use cases capture significantly
more information as they also describe the context surrounding the system services,
such as the users’ work processes and their physical environment.

A User Task is a unit of work that is meaningful to the user. It is part of the environ-
ment in which the system operates, often a step in an encompassing business process.
Only by knowing the user tasks in detail a system with maximal support to the user can
be designed [8]. A use case describes how a user task can be achieved through a se-
quence of interactions with the system. Thus, the user tasks make the functional and
nonfunctional goals of the users in the use case explicit.

Fig. 1 depicts the relationship between User Task, Use Case, and System Service. A
user task describes environment specific phenomena independently of the system. For
example, “Withdrawing Money from a Bank Account” is a user task. A system service
describes a system specific phenomenon independently of a user task. For example,
“Authenticating with the Automated Teller Machine (ATM)” is a system service. A use
case is a sequence of interactions between a user and the system whose purpose is to
accomplish a specific user task. For example, the “Withdraw Money from ATM” use
case would describe the general sequence of services a user needs to invoke to withdraw
money from a bank account using an ATM. 

Nonfunctional constraints are constraints on the use cases, the system services, or the
system. “The user should be able to withdraw a sum of money within a minute of au-
thenticating with the ATM” is a performance constraint on the maximum duration of the

Fig. 1.  Relationship between User Task, Use Case, and System Service (UML class diagram).

Environment specific System specific

User Task Use Case System Service
1 * * *



“Withdraw Money from ATM” use case. “Every command should provide feedback to
the user within 1 second” is a constraint on all system services. “The ATM should have
a 95% availability” is a reliability constraint on the system. For the purpose of tool sup-
port, all Requirements Elements–namely use cases, scenarios, system services, nonfunc-
tional constraints and glossary entries–are stored in an Option Base. The Requirements
Specification includes all the use cases, definition of system services, and nonfunctional
constraints that are necessary to describe a system completely. 

2.2 Processes
The input of our requirements engineering process is a Problem Statement, written by
the client and the requirements engineers, describing the user tasks that the system
should support. The problem statement serves two purposes: First, it provides an initial
description of the environment of the system (e.g., a set of actors, business processes,
and user tasks); second, it establishes the scope of the work supported by the system
(i.e., which business processes and user tasks should be supported and which should
not). We are well aware that producing an adequate problem statement requires a re-
quirements process in itself. However, here we concentrate on the specification of re-
quirements to be used as input to software design.

The requirements engineering process we describe below is iterative and incremen-
tal. The requirements engineers may decide to write and refine only a limited set of use
cases at the time (i.e., a depth first approach), or, conversely, work concurrently all use
cases (i.e., a breadth first approach). Each iteration, however, is composed of the activ-
ities depicted in Fig. 2. Note that this use case diagram describes the steps of the require-
ments engineering process and, at the same time, the use cases for the tool support we
envision.2 Note also that we distinguish in the diagram user tasks from use cases by la-
belling them UT and UC, respectively. 

We stipulate the requirements activities to be carried out within the following steps:

1. Create Use Case. This step develops an initial draft of one use case for each user task
which determines which parts of the user tasks are realized by the system and which
are realized by the user. The initial use cases are high level and usually do not focus
on system services or nonfunctional constraints. 

2. Create Example Scenario. This step develops example scenarios for each use case
and ensures that each high-level use case appropriately addresses each user task. The
development of scenarios also initiates discussions about how the functionality pro-
vided by the system should be organized into system services.

3. Create System Service. This step refines each use case in terms of system services
and defines the system services more precisely to find a correspondence between
each interaction and each system service. 

4. Define Constraint. This step identifies and describes nonfunctional constraints for
each use case. These constraints describe properties that the system must have in or-
der to be useful to the user. This step may also result in nonfunctional constraints that
are applicable to the complete system.

2. The “Create User Task” use case is not part of our process, but necessary to input the problem 
statement into the tool.



5. Describe Exceptional Case. This step describes the response of the system under er-
ror conditions, such as wrong user input or component failure. Exceptional cases are
also described as flow of events but are separated from common cases for clarity. 

6. Create Glossary Entry. All terminology specific to the use case is captured in a glos-
sary. This includes terminology specific to the user tasks as well as terminology spe-
cific to the system services described in the use cases.

7. Consolidate System Services. This step finds redundancies among use cases. Similar
services are consolidated into a single service. This results into a simpler and more
consistent system. 

The first five steps built on one another, while the last two steps are concurrent to all the
other ones. Fig. 7 in Sect. 5 shows an example of a consolidated use case. Preconditions
include actor visible constraints that are necessary for the successful execution of the
use case as well as invisible constraints that are specific to the system state. The exit
conditions describe the outcome of successful use case execution, including actor visi-
ble conditions as well as conditions on system state. The flow of events captures the nor-
mal use case interaction as well as references to possible exceptions. The interactions
during exceptions are described separately and include an exit condition describing the
outcome of the exception handling.

Requirements engineering is fundamentally iterative. Each of the seven steps we de-
scribe is executed several times on the same subset of use cases. While executing one of
these steps, questions can be raised about other use cases or other steps. Describing a

Fig. 2. The requirements capture process (UML use case diagram, gray ovals depict user tasks). 

Propose Option UC

Requirements

Create User Task UC

Create Use Case UC

Create Example Scenario UC

Create System Service UC

Create Glossary Entry UC

Create Requirements UT

Consolidate Requirements UT

Define Constraint UC

Consolidate System Services UC

Describe Exceptional Case UC
Engineer



scenario can trigger questions about its corresponding use case, which is then changed.
When raising, discussing, and answering questions, requirements engineers generate ra-
tionale information that we are interested in capturing and using downstream. In the
next section, we describe the processes aimed at capturing and structuring this informa-
tion.

3 Capturing Rationale as an Issue Model
Rationale is the justification of decisions [3]. Rationale methods aim at capturing the
justification of decisions, first, to improve their quality and, second, to record the rea-
soning that went into them for the event when they are revised. Argumentation-based
rationale is an approach that represents rationale as a graph of rhetorical steps, also
called an issue model. Many different models have been proposed, including IBIS [11]
and QOC, [14] to name a few. We first describe our model, which is a refinement of the
QOC model. We then describe the processes of capturing and maintaining rationale.

3.1 Concepts
To each decision corresponds a Question that needs to be solved for the requirements
process to proceed. Questions can indicate a problem with the proposed system (e.g.,
“Requiring the user to input manually: Is there a simpler way to authenticate the user?”),
a problem with the domain description (e.g., “Are bank customers allowed overdraw
their accounts?”), or a clarification (e.g., “What are all the conditions a bank customer
needs to meet before using an ATM?”).

Options are possible solutions that could address the question under consideration.
These include options that were explored but discarded because they did not satisfy one
or more constraints. For example, a biometric sensor for reading finger prints is current-
ly too expensive for an ATM. Similar options can be grouped into a main option and a
number of refined options.

Criteria are desirable qualities that the selected option should satisfy. For example:
“The cost of an individual ATM should be minimized given that a bank can have many
ATMs.” Or: “The security of the system needs to be reasonably high such that the cost
of fraud does not outweigh the benefits of providing an ATM service.” Criteria are es-
sentially high-level nonfunctional constraints. Hereafter, we refer to criteria as nonfunc-
tional constraints.
Requirements engineering and software development are not algorithmic. Users and re-
quirements engineers discover questions, try different options, and argue their relative
benefits. It is only after much discussion that a consensus is reached or a decision im-
posed. This argumentation on all aspects of the decision process, including nonfunction-
al constraints, explored options, and questions is captured as Argument nodes which can
be attached to any other node in the issue model.

A Decision is the resolution of a question representing the selected option. Decisions
are already captured in the use cases during requirements engineering. We only need to
capture the relationship between decisions and their corresponding rationale. A question
that has been closed can be reopened, in which case the decision becomes an obsolete
one. Fig. 3 depicts an example issue model for describing possible authentication mech-
anisms for an ATM. 



3.2 Processes
The rationale of requirements is captured by two processes. The first process, the cap-
ture process executed by a requirements engineer or a reviewer, focuses on capturing
rationale, whereas the second process, the maintenance process executed by the ratio-
nale maintainer, focuses on consolidating and restructuring the rationale for future use. 

The capture process is composed of the following steps (see Fig. 4 where, again, pro-
cess steps coincide with tool use cases3):

Fig. 3. An example of issue model (UML object diagram). The authentication mechanism of the
ATM can be either a magnetic card requiring a PIN, a biometric sensor, or an account number and
a PIN that the user needs to memorize. Each option is then evaluated against a set of criteria.

Fig. 4. The rationale capture process (UML use case diagram, user task indicated in gray). 

3. The “Browse Requirements Elements” use case is not part of our process but is necessary to 
access the requirements elements through the tool.

Low unit cost

Security:Criterion
++

+
-

+

:Criterion

responds toresponds to
responds to

Card&PIN:Option

FingerPrint:Option

Account&PIN:Option

Which Authentication
Mechanism?:Question

Address Challenge UT

Explore Options UC

Evaluate Options UC

Reviewer
Review Requirements

Requirements

Propose Option UC

Propose High-Level

Define Constraints UC

Assess Option Against

Argue Option UC

Select Option UC

Challenge UC

Engineer

Browse Requirements

Elements UT

Option UC

Constraints UC

Elements UC



1. Challenge. A reviewer reads some part of the requirements specification and chal-
lenges problem areas with questions.

2. Explore Options. Questions can result in the discussion of possible changes in the re-
quirements specification. A possible option that is always available is the status quo,
that is, not to change the requirements. Clarification questions are addressed with op-
tions to improve the requirements specification without necessarily resulting in
changes to the system. An option can be completely specified by writing out the cor-
responding use cases (Propose Option) or can be simply described as a high-level op-
tion (Propose High-Level Option). In both cases, the options should contain enough
detail to enable the requirements engineer to evaluate and compare the proposed op-
tions (Define Constraints).

3. Evaluate Options. Once a sufficient number of options have been proposed, require-
ments engineers need to evaluate them and refine them to satisfy nonfunctional con-
straints (Assess Options Against Constraints). During this step, requirements engi-
neers also create arguments supporting and opposing options (Argue Option).

4. Select Option. Once requirements engineers have evaluated and refined (most or) all
options, requirements engineers create a decision by selecting an option which can
result in minor or substantial change in the requirements specification. Note that a
clarification question can be resolved without any changes. Note also that addressing
a question may invalidate previous options and revisit earlier decisions. We discuss
this point in more depth in Sect. 4.

During the capture process, requirements engineers may skip any of the above steps.
Options can be generated and evaluated without an explicit question. Decisions can be
taken and changes implemented without explicit discussion. It is desirable, however,
that at least some of the components of the decision are recorded so that the rationale
maintenance process can recover the missing parts.

The capture process can be executed at any time. We anticipate, however, that it will
occur when requirements engineers review the requirements specification, either when
validating the requirements or in the process of executing a requirements step. The
maintenance process, however, is executed by the rationale maintainer whose responsi-
bility is to keep the content and structure of the rationale up to date. The maintenance
process is composed of the following steps (see Fig. 5):

Fig. 5. The rationale maintenance process (UML use case diagram, user task indicated in gray). 

Maintain Rationale UT
Rationale Maintainer

Identify Missing Questions UC

Identify Missing Decisions UC

Consolidate Options UC

Consolidate Questions UC

Consolidate Arguments UC



1. Identify Missing Questions. Given that requirements engineers may skip steps in the
capture process, there can be options that were captured without their corresponding
question. In most cases, the implicit question can be made explicit using the options.

2. Identify Missing Decisions. Most decisions occur during meetings or face-to-face
conversations. Consequently, they may be implemented in the requirements specifi-
cation but not captured in the issue model. The rationale maintainer can identify these
decisions by ensuring each change is associated with a decision. 

3. Consolidate Options. When discussing a question, the requirements engineers may
propose similar options. The rationale maintainer consolidates identical options into
single nodes and restructures similar options.

4. Consolidate Questions. When reviewing requirements elements, reviewers may raise
similar questions. The rationale maintainer consolidates identical questions into sin-
gle nodes and restructures similar options.

5. Consolidate Arguments. Arguments often constitute the bulk of rationale informa-
tion [15]. Arguments are usually unstructured and may apply to several options and
decisions. The rationale maintainer summarizes verbose or redundant arguments and
adds missing links to relevant rationale nodes.

4 Integrating Requirements and Rationale
In the previous two sections, we described two groups of processes: one for capturing
and consolidating requirements and one for capturing and maintaining rationale. The
second group of processes represents additional overhead for developers. Capturing and
maintaining rationale will yield benefits only if both process groups and their corre-
sponding tool support are integrated. Indeed, the integration of rationale methods and
tools with various aspects of development is a fundamental issue that has received too
little attention in rationale research [12]. In this section, we describe the concepts and
process steps which are related to the integration of requirements and rationale capture.

4.1 Concepts
We identify three areas where additional associations need to be created:

Questions/Requirements associations. The association between a question and the
requirements that are challenged needs to be captured. This enables a reviewer to spec-
ify which parts of the requirements are challenged and for a requirements engineer to
list all questions for a given requirements element.

Option/Requirements associations. An option can be thought of as an aggregate
change on the option base. The association between an option (or a high-level option)
and the requirements elements that the option proposes, removes, or modifies also needs
to be captured. When evaluating an option, this enables the requirements engineer to as-
sess the impact of an option. When understanding the requirements, this allows a re-
viewer to trace back the source option or question that lead to a specific requirement.

Requirements elements status. Given that requirements engineer can propose new re-
quirements elements as part of an option but that these requirements elements can be
discarded in favor of another option, each requirements element in the option base needs
to include a status attribute. The requirements status can take three values:
• current, if the requirements element is part of the current option,



• proposed, if the requirements element is part of an option that has not been selected, 
• discarded, if the requirements element was part of the current option but has been 

discarded in favor of another option.

4.2 Processes
To integrate the requirements and rationale processes, we modify the steps Propose Op-
tion, Challenge, and Select Option, and introduce three new steps, Realize High-Level
Option, Discard Current Requirement, and Make Proposed Requirement Current.

The Propose Option step (Sect. 2) sets the initial value of the status attribute of each
new requirement to proposed. This allows requirements engineers to distinguish be-
tween requirements they have just entered with those that are part of the current option.

The Challenge step (Sect. 3) creates associations between the question and the re-
quirements being challenged. These associations make explicit relationships between
rationale and requirements and allow reviewers and requirements engineers to trace
changes to specific problems.

The Select Option step (Sect. 3) can have two variations (Fig. 6). Either an option is
selected or a high-level option is selected. If a high-level option is selected, it is first re-
alized by creating all proposed use cases and modifying existing use cases. This is ac-
complished using the Realize High-Level Option process step. At the end of this step, a
new option is created and linked with the corresponding requirement. The Select Option
step then invokes the Discard Current Requirement step to change the status of any re-
quirement that needs to be discarded. The Make Proposed Option Current step is then
invoked to change the status of the proposed requirements to current.

The differentiation between high-level options and options enables requirements en-
gineer to debate several options without fully developing them a priori. We anticipate
this will encourage the capture of more information about discarded options.

5 Tool Support
We have used our own process for identifying the requirements for the tool support for
our process. Fig. 7 shows the Realize High-Level Option use case as an example for such
a tool use case.

We plan to explore two tool options: One is to use and customize a commercial re-
quirements management tool, such as DOORS [7], the other is to implement a prototype
Web application. The advantage of the requirements management tool is that it supports
well the linkage of requirements with rationale elements and the browsing of both with
all sorts of filter functions. This, in particular, supports rationale maintenance and inves-

Fig. 6. Refined Select Option use case (UML use case diagram). 

Realize High-Level Option

Discard Current Requirement

Make Proposed Requirement Current

Select Option

Propose Option



tigation of the option base. On the other hand these tools are quite comprehensive and
therefore require substantial effort to learn and use efficiently, which is a drawback
when conducting experiments with students.

The advantages of a prototype Web application are that it can have a simple and in-
tuitive interface for users familiar with Web browsers and can support a number of con-
current collaborating users. The Web application also makes it easier to instrument and
capture the data for evaluation, such as accesses to specific elements of the requirements
or the rationale. The disadvantages of a Web application is that it provides less function-
ality than a commercial tool.

Use Case Name Realize High-Level Option

Actor Requirements Engineer

User Task Address Challenge

Precondition The requirements engineer is authenticated with the system. The 
requirements engineer is in the process of selecting this high-level option as 
the current option to address a question.

Exit Condition A new option is created in the option base, including new requirements 
elements, and possibly revising or removing older requirements elements. 
New arguments may be added to the option base. Associations between the 
new option, the new arguments, and the modified requirements elements 
are created.

Flow of Events The requirements engineer selects a high-level option. The requirements 
engineer first reviews the list of new use cases to be added to the system, 
use cases to be revised, and old use cases to be removed, using the Browse 
Requirements Elements use case.
The requirements engineer then creates a new option based on the high-
level option using the Propose Option use case. 
The requirements engineer revises any new or existing use cases, as 
needed.
The requirements engineer revises or creates additional scenarios, glossary 
entries and system services, associated with the modified use cases, as 
needed.
The requirements engineer can create and associate arguments with any of 
the modified requirements elements to justify their existence.
Once the requirements engineer indicates to the system that the high-level 
option has been realized, the system checks whether all elements of the 
high-level option have been dealt with and creates associations between the 
new option in the option base and the modified requirements elements.

Nonfunctional 
Constraints

None

Exceptions The requirements engineer exits the tool before indicating to the system 
that the high-level option has been realized. The system offers the 
requirements engineer to undo his changes or to complete the high-level 
option.
The requirements engineer fails to create a new use case specified in the 
high-level option. The system prompts the requirements engineer whether 
to remove the use case from the high-level option or to create it.

Fig. 7. Example of consolidated use case for the envisioned tool support.



We plan to explore both approaches, the commercial tool for the purpose of refining
and improving our process with individual experienced developers, the Web prototype
for the purpose of conducting experiments with groups of students.

6 Experimental Context
In this section, we describe the goals, research questions, and hypotheses of the planned
experiment. The goal and the research questions can be summarized according to the
Goal Question Metric (GQM) paradigm [1].  The quality of entries will be judged ac-

cording to adherence to the given templates and the subjective judgements of the authors
of this paper. We list below the hypotheses regarding the above questions:

1. We expect the number of use cases to be less than the numbers of the other require-
ments elements, since one use case gives rise to several of the other elements. We
expect the quality of the scenarios to be higher than the quality of the other elements,
since typically it is easier to create exemplary information than to create abstractions
like use cases, system services, or glossary entries. Regarding the sequence, we ex-
pected adherence to our process, since the subjects are students.

2. We expect most rationale elements created by a requirements engineer to be ques-
tions and decisions, because we expect most questions are usually request for clari-
fication and non contentious, as in other research projects [2]. We expect options and
high-level options to be created only in the context of contentious questions. We ex-
pect the quality of rationale elements created by the rationale maintainer to be supe-
rior than the rationale elements created by the requirements engineer.

3. We expect that most associations between requirements elements and rationale will
be generated by the tool and few additional associations will be entered by the ratio-
nale maintainer, as these associations are often already implicitly contained in the de-
scription of the rationale elements.

Analyze tool usage

for the purpose of understanding rationale usage

with respect to 1. number, quality, and sequence of requirements elements created during 
requirements specification

2. number, quality, and sequence of rationale elements (e.g., questions, 
options, decisions) created during requirements specification by either a 
requirements engineer or a maintainer

3. number, quality, and sequence of the associations between requirements 
and rationale created during requirements specification

4. number of status changes of requirements elements during requirements 
specification and design

5. number of accesses to the different requirements elements and rationale 
elements during design

6. number of accesses to the different rationale elements during 
requirements change

from the 
viewpoint of

the researcher

in the context of a 4-month software development course at the Technical University 
Munich.



4. We expect more status changes during design than during requirements specifica-
tion, since the students do not have access to the users. Thus, they have a lot of free-
dom in fixing the requirements, but - being students - they will lack experience on
how easy it is to realize the requirements.

5. We expect more accesses to use cases than on the other requirements elements, since
use cases capture more context than the other entries.

6. We expect more accesses to arguments than to the other rationale elements, since
they are most important to understand decisions.
By validating or rejecting the above hypotheses, we will have deepened our under-

standing of the creation and use of rationale during use case driven software develop-
ment. In addition, we will identify shortcomings in the tool support and the requirements
process.

7 Conclusion and Related Work
We have proposed an integrated process for capturing requirements as use cases and
capturing the rationale for decisions taken in the requirements specification. The em-
phasis of our approach is on support for documenting knowledge from the requirements
engineering process as much as is possible and helpful for use in dependent develop-
ment processes like software design or testing and for requirements change. Another fo-
cus is to make rationale capture and usage for developers as easy as possible through
provision of a tool and a defined process, as well as by stipulating support through a ra-
tionale maintainer.

Through these two foci we complement the existing research on integration of ratio-
nale within requirements engineering:

Inquiry-based requirements analysis is a method for incrementally refining a re-
quirements specification and capturing requirements discussion [18]. ScenIC [19] is an
instantiation of this method. It aims mainly at improving the quality of the requirements
documents by supporting semantic, episodic, and working memory for project attention
management. Thus, ScenIC supports the requirements elicitation process through an ex-
plicit notion of goals and episodes, while our approach supports requirements documen-
tation and the interface to dependent software development processes through a clear
distinction between user tasks, use cases and system services. This follows the general
principle of combining goal based and object/activity based approaches put forward in
[16]. The focus on tasks and nonfunctional requirements distinguishes also our ap-
proach from other approaches to contextualize use cases through goals as for example,
in [5], [13], and [17].

The Theory-W based spiral approach, supported by the WinWin tool, aims at sup-
porting requirements negotiation with a computer tool tracking each stakeholder’s
“Win” conditions and their resolution [2]. Experimental validation of the Theory W
model shows that the use of an issue model for negotiation support enhances trust and
shared understanding among shareholders, even in the presence of uncertainties and
changing requirements. In our approach, we attempt to generalize these results to the
other aspects of software development.

SCRAM [21] uses rationale to improve the elicitation and validation of requirements
with users. Their focus is to improve the quality of requirements by eliciting more in-



formation and more kinds of information by making the requirements rationale visible
to the users. In an earlier study [20], Sutcliffe observed that the availability of rationale
information lead users to ask more questions and more open ended questions during
elicitation sessions. We stipulate that the availability of rationale information and their
association to use cases will lead to similar benefits among developers during later phas-
es of software development.

References
[1] V.R. Basili, G. Caldiera, & H.D. Rombach, “Goal Question Metric Paradigm”, In J.J. Marciniak (ed.), 

Encyclopedia of Software Engineering, vol.1, pp.528–532, John Wiley & Sons, 1994.
[2] B.Boehm, A. Egyed, J. Kwan, D. Port, A. Shah, & R. Madachy, “Using the WinWin Spiral Model: A 

Case Study,” in IEEE Computer, pp. 33–44, July 1998.
[3] B. Bruegge & A.H. Dutoit, Object-Oriented Software Engineering: Conquering Complex and Changing 

Systems, Prentice Hall, Upper Saddle River, NJ, 1999.
[4] S. Buckingham Shum & N. Hammond, “Argumentation-based design rationale: what use at what cost?” 

International Journal of Human-Computer Studies, vol. 40, pp. 603–652, 1994.
[5] A. Cockburn, “Goals and Use Cases”, Journal of Object-Oriented Programming, vol. 10, no.5, pp. 35–

40, 1997.
[6] J. Conklin & K. C. Burgess-Yakemovic, “A process-oriented approach to design rationale,” Human-

Computer Interaction, vol. 6, pp. 357–391, 1991.
[7] QSS, http://www.qssinc.com.
[8] “Benutzer-orientierte Gestaltung interaktiver Systeme”, Normentwurf, DIN EN ISO 13407, 1998
[9] I. Jacobson, M. Christerson, P. Jonsson, & G. Overgaard, Object-Oriented Software Engineering—A 

Use Case Driven Approach. Addison-Wesley, Reading, MA, 1992.
[10] I. Jacobson, G. Booch, & J. Rumbaugh, The Unified Software Development Process. Addison-Wesley, 

Reading, MA, 1999.
[11] W. Kunz & H. Rittel, “Issues as elements of information systems,” Working Paper No. 131, Institut für 

Grundlagen der Plannung, Universität Stuttgart, Germany, 1970.
[12] J. Lee, “Design Rationale Systems: Understanding The Issues,” in IEEE Expert, pp. 78–85, May/June 

1997.
[13] J.C.S. do Prado Leite, G. Rossi, F. Balaguer, A. Maiorana, G. Kaplan, G. Hadad & A. Oliveros, “En-

hancing a Requirements Baseline with Scenarios”, International Symposium in Requirements Engineer-
ing, RE’97, pp. 44–53, 1997.

[14] A. MacLean, R. M. Young, V. Bellotti, & T. Moran, “Questions, options, and criteria: Elements of de-
sign space analysis,” Human-Computer Interaction, vol. 6, pp. 201–250, 1991.

[15] T. P. Moran & J. M. Carroll (eds.), Design Rationale: Concepts, Techniques, and Use. Lawrence Erl-
baum Associates, Mahwah, NJ, 1996.

[16] J. Mylopoulos, L. Chung, & E. Yu, ”From Object-Oriented to Goal-Oriented Requirements Analysis”, 
Communication of the ACM, vol. 42, pp. 31–37, 1999.

[17] K. Pohl & P. Haumer, “Modelling Contextual Information about Scenarios”, International Workshop on 
Requirements Engineering: Foundations of Software Quality, REFSQ’97, pp. 197–204, 1997.

[18] C. Potts, K. Takahashi, & A. I. Anton, “Inquiry-based requirements analysis,” IEEE Software, vol. 11, 
no. 2, pp. 21–32, 1994.

[19] C. Potts, “ScenIC: A Strategy for Inquiry-Driven Requirements Determination”, International Sympo-
sium on Requirements Engineering, RE’99, pp. 58–65,1999.

[20] A. Sutcliffe, “Requirements Rationales: Integrating Approaches to Requirement Analysis,” In Olson 
G.M., Schuon S, (eds.) Proc. of Designing Interactive Systems, DIS’ 95, pp. 33–42, ACM Press, New 
York, 1995.

[21] A. Sutcliffe & M. Ryan, “Experience with SCRAM, a SCenario Requirements Analysis Method,” In 
Proc. of the 3rd International Conference on Requirements Engineering, pp. 164–171, April 1998.

[22] C. Rolland, G. Grosz, & R. Kla, “Experience with Goal-Scenario Coupling in Requirements Engineer-
ing”, Proc. of International Symposium on Requirements Engineering, RE’99, pp.74–81, 1999.


	Supporting Evolution: Using Rationale in Use Case Driven Software Development
	1 Introduction
	2 Capturing Requirements as Use Cases
	2.1 Concepts
	2.2 Processes

	3 Capturing Rationale as an Issue Model
	3.1 Concepts
	3.2 Processes

	4 Integrating Requirements and Rationale
	4.1 Concepts
	4.2 Processes

	5 Tool Support
	6 Experimental Context
	7 Conclusion and Related Work


