
Case study in section 6 was removed because it is confidential

 1

Software Quality by Misuse Analysis

Working Paper 2005-AH-1

Authors:
 Andrea Herrmann
 Barbara Paech

 Version 1.5
 9th Jan 2007

Case study in section 6 was removed because it is confidential

 2

Case study in section 6 was removed because it is confidential

 3

The „Software Systems Engineering“
Group is part of the Institute of
Mathematics and Computer Sciences of
the Ruprecht-Karls-Universität
Heidelberg. It is managed by

Prof. Dr. Barbara Paech
Institut für Informatik
Neuenheimer Feld 348
69120 Heidelberg
Germany

paech@informatik.uni-heidelberg.de

http://www-swe.informatik.uni-heidelberg.de/

Case study in section 6 was removed because it is confidential

 4

Case study in section 6 was removed because it is confidential

 5

Abstract:

The research project SIKOSA is funded by the Ministery for Science, Research and Art of
Baden-Württemberg, Germany (Ministerium für Wissenschaft, Forschung und Kunst Baden-
Württemberg). We also want to thank Damian Plaza who spent many hours on the case study.

Within the research project SIKOSA and its work package „Requirements“ a method for
requirements elicitation and documentation has been developed which derives all types of
non-functional requirements by using misuse cases, not only security requirements. This
“Misuse-oriented Quality Requirements Engineering” method (short: MOQARE) has been
integrated with the elicitation and documentation of functional requirements.

There are several methods for the derivation and analysis of detailed non-functional
requirements. These methods often are designed for a restricted field of application, e.g.
misuse cases for top-down derivation of requirements detailing the quality attribute
“security”, or ATAM for evaluating given architectural alternatives. In this work, we apply
misuse cases to any other quality attribute (e.g. usability, maintainability) to develop a method
for deriving detailed non-functional and functional requirements from any quality attribute.
Doing so, we find that generalizations have to be made to the definitions of the misuse case
concepts, and new concepts must be included. We applied our method successfully in a case
study. It was a good tool for systematic and concrete requirements elicitation easily
understood by the stakeholders and leading to realizable requirements.

By the “Misuse-oriented Quality Requirements Engineering” method (short: MOQARE),
NFR were operationalized as to be realizable, and at the end, further FRs for the system were
found and constraints to FRs. Therefore, it makes sense to present the results of the NFR
method with the FRs in an integrated presentation. Such a presentation will be a good basis
for the design, implementation and test of the system, much better than a separate presentation
of FR and NFR.

This working paper is the first out of a series which will be produced in the SIKOSA research
project. While here the integration of NFR and FR during the requirements elicitation is
treated, later papers will investigate the interface between requirements and architectural
design, requirements and test cases, and requirements and project management.

The case study which was performed with MOQARE is confidential.

Case study in section 6 was removed because it is confidential

 6

1 Introduction .. 7
2 Related Work.. 7
3 Generalized Misuse Case Concepts ... 12
4 The MOQARE Method.. 16
5 Integration of MOQARE with TRAIN .. 20

5.1 Functional Requirements in TRAIN .. 20
5.2 Integrated Method .. 22
5.3 Non-functional Requirements in TRAIN... 22

6 Case Study.. 24
6.1 Discussion of the results and the course of the case study....................................... 24

7 Perspectives for Further Research.. 26
8 Summary of the Paper .. 27
Annex A Checklists.. 28

A.1 Business Goals .. 28
A.2 Assets... 29
A.3 List of QAs .. 29
A.4 QAs with lists of threats and their countermeasures ... 31
A.5 Assets with lists of vulnerabilities and countermeasures .. 53

References .. 75

Case study in section 6 was removed because it is confidential

 7

1 Introduction
Elicitation of quality requirements for software systems often starts with quality goals vaguely
expressed and applying to the whole system (e.g.: “The system shall be secure/ easily usable/
fast.”). However, such a requirement is neither detailed enough for being implemented by a
developer nor for being tested by a software tester, not to mention its usefulness for cost
estimation.
There are several methods for exploring non-functional requirements (NFR). These methods
often are designed for a restricted field of application, like Misuse Cases [SO00][SO01] for
detailing the QA “security”, or ATAM (=Architecture Tradeoff Analysis Method) [KKC00]
for evaluating given architectural alternatives. In this work, we apply misuse cases to other
quality attributes (QAs). The misuse cases in the realm of security have given the benefit of
completing the view on a system considering exceptions and threats, not only the intended
and successful use. To define and detail the successful use of a system and its quality, it is
important to think about threats to both. Furthermore, misuses help to relate NFR to
functional requirements (FR), which in our opinion must be considered “in a tightly integrated
approach” [PDKV02]. Sutcliffe and Minocha [SM98] as well as Hochmüller [Hoc97] suppose
that NFR express constraints on FR and design.
Our aim was to develop a misuse-based method, the so-called “Misuse-oriented Quality
Requirements Engineering” method (short: MOQARE), for deriving detailed non-functional
and functional requirements. This method was meant to be systematic and thorough,
understandable for the stakeholders and leading to realizable, detailed requirements.
Developing and testing this method, we found that generalizations to the definitions of the
misuse case concepts are necessary, and new concepts must be included. We adopted
elements from ATAM, the scenario templates of Sutcliffe and Minocha, and some more, and
content from the softgoal graphs of Chung et al. [CNYM00], and the Quality Models of Dörr
et al. [DKVP03][DPB+04].
Finally, MOQARE is integrated into the requirements engineering method TRAIN already
used at our institute. We applied as well the misuse case analysis as the integrated method to
perform an extensive case study, which helped to test and to improve the method.
This working paper is structured as follows: Section 2 discusses related work, section 3
presents our generalized terminology. In section 4, we present a misuse case based method for
deriving requirements. Section 5 describes the integration of MOQARE into TRAIN, with a
special focus on explaining how functional and non-functional requirements are integrated. In
section 6, we apply the method to a case study. In section 7 we describe perspectives for
further research, while section 8 summarizes the paper. Annex A contains the checklists used
for MOQARE and is followed by the references.

2 Related Work

In this paper, we do not invent anything which would be totally new, but we integrate the
concepts used in literature from the misuse cases, risk analysis, security, reliability, NFR or

Case study in section 6 was removed because it is confidential

 8

architecture evaluation context. What is new is the application of misuse cases to all quality
attributes other than security, and the systematic approach we developed for doing so. In this
section, we refer to our sources and related literature and describe them shortly, and name the
elements we adopted from them.
We not only refer to the misuse case literature itself, but also to the vast risk analysis
literature. Some requirements engineering researchers also treat attacks and other concepts for
operationalizing security and other non-functional requirements, and even for evaluating
architectural alternatives risks have been used.
Our work is based on the Misuse Cases´ principle: Misuse Cases take the view of a misuser
whose goal is to misuse the system. Misuse cases foresee his/ her behaviour and define what
the system must not do or not allow. From these misuse cases new system requirements can
be derived. So misuse cases help to complement the system specification.
The concept of Misuse Cases has a short history. John McDermott [MDF99] and Chris Fox
introduced the term 'Abuse Case' for eliciting security requirements. Sindre and Opdahl
[SO00], [SO01] explicitly call them Misuse Cases. Karen Allenby and Tim Kelly [AK01]
describe a similar method for eliciting and analyzing safety requirements for aero-engines
using what they call 'use cases'. The concept of misuse cases has been used successfully since,
and several experience reports are available ([ABD02], [Ale02], [Fir03b], [MHN04]).
We chose the misuse case approach as a basis for examining quality attributes because in the
realm of security it has given the benefit of completing the view on a system by what must not
happen, and it derives functional from non-functional requirements, which in our opinion
must not be separated. We do not want to separate the specification of functional requirements
(FR) from the non-functional requirements (NFR) or the architecture. They must be
considered “in a tightly integrated approach” as is motivated by Paech et al. [PDKV02]: FR
and NFR constrain each other, and both must be realized by the architecture (see also
[SM98],[Hoc97]).
Sutcliffe and Minocha [SM98] presuppose that “NFR have a close tie with functional
specification”, and that they express constraints on FR and design solutions. We adopt this
view. Sutcliffe and Minocha developed scenario templates similar to misuse cases for process
guidance in early exploration and validation of NFR. These templates contain, among others,
the parameters “expected failure” and “damage”, “scenario description”, “agent” and
“motivation”, “countermeasure”. They emphasise that as well NFR as scenarios must be
tested against an existing system or some vision of a system (architecture, design or
prototype). For assessing how well an NFR is satisfied in a system they decompose NFR into
quality criteria and deduce metrics. The scenarios are also used as test scripts. From their
terminology, we pick the term “countermeasure” as the most general expression for anything
one does against a threat.
Although the misuse cases have been invented for describing security requirements, there has
been the idea that they can do more. We follow a suggestion of I. Alexander [Ale02]: “There
is scope for further work applying Misuse Cases to elicit Usability requirements.” In [Ale03]
he himself applied the misuse cases to reliability, maintainability and portability. Firesmith
[Fir03a] highlights the similarities of safety, security and survivability. We go a step further
and apply misuse cases also to all the other quality attributes and, in the following two
sections, develop a systematic method for doing so.
We refer to the categories of quality attributes as defined by the standard ISO 9126 [ISO91].

For treating security requirements, several requirements elicitation and documentation
methods have been adapted by considering misuses using various different names and
concepts.

Case study in section 6 was removed because it is confidential

 9

A. van Lamsweerde and L. Willemet [LW98] in their paper intertwining goal-based and
scenario-based RE regard “positive” and “negative” scenarios, i.e. desired and undesirable
behaviour. They define obstacles to be working against goals.
Lamsweerde et al. in an extension of the KAOS framework consider intruder anti-goals
against system goals [LBDJ03]. For identifying security requirements they also part from
attacks. Goals are operationalized into specifications of operations to achieve them. These
goal-anchored trees are used to describe unintentional attacks, while intentional ones are
modelled by anti-goal trees. Root anti-goals are obtained by the negation of confidentiality,
privacy, integrity and availability, safety, security, fault-tolerance and survivability. The anti-
goals are also called “obstacles to requirements achievement”. Attackers set up obstacles
intentionally to break security goals. “Attack trees are derived systematically through anti-
goal refinement until leaf nodes are reached that are software vulnerabilities observable by the
attacker or anti-requirements implementable by this attacker.” They distinguish between
functional goals, non-functional goals and domain properties. In our work, we will derive a
similar tree.
Liu, Yu and Mylopoulos in one of their papers [LYM03] analyse security and privacy
requirements within a methological framework based on i*. They start with an actor analysis
and from the actors derive attackers. Actors also lead to goals/ tasks and dependencies
between actors, while attackers are attributed a malicious intent. They postulate that
dependencies lead to vulnerabilities/ threats. From these they derive attacking measures and
countermeasures. In a second step they rank design alternatives by a goal-based evaluation,
according to the contribution of design alternatives to the softgoals of the system. We do not
start with the actors, but with the assets to be protected.
The Object Management Group did integrate the risk assessment concepts into the UML
Standard and enhanced this standard accordingly [OMG04]. The most important concepts are,
presented in five submodels:
1.) SWOT analysis: strengths, weaknesses, opportunities, and threats
2.) context: stakeholders, assets (also called target of evaluation), asset value, policy
3.) unwanted incidents: agent, scenario, threats (threat = threat agent + threat scenario) +
vulnerabilities, reduction of asset value, link to other unwanted incidents
4.) risks: risk = unwanted incident + consequence + frequency, risk value = loss of asset
value, link to other risks
5.) treatments: ways of treating the system (for reducing risk), treatment effect, treatment
evaluation, risk reduction, reduction consequence, reduction likelihood
Concerning the order of derivation they write: “The metamodel is divided into five submodels
that support different stages of a risk assessment. A risk assessment always starts with
identifying the context of the assessment. A strengths, weaknesses, opportunities, and threats
(SWOT) analysis may be part of this. After the context has been established, the remainder of
a risk assessment can be divided into identification and documentation of unwanted incidents,
risks, and treatments.” These concepts are modelled in UML like this: class diagram for assets
and stakeholders, use case diagram for threats, unwanted incidents, swot and treatment, risk as
class. Their report also contains an extensive treatment of metrics and discussion of different
types. We do not use much of UML, only use case diagrams to show use cases and misuse
cases.
Moore, Ellison and Linger [MEL01] describe attack patterns by the attributes attack goal,
preconditions (e.g. vulnerability), steps for carrying out the attack and postconditions (e.g.
damage). As pre- and postconditions are part of a use case, we adopt this notation.

The concepts of assets, vulnerability and threats are implicitly used everywhere in the area of
security assessment, see for example [CC99] and [BSI04], but the concepts are not clearly
defined and even mixed because of lack of differentiation. Therefore, from the security and

Case study in section 6 was removed because it is confidential

 10

reliability literature, we adopt only some single elements or ideas which were useful for our
method.
The SQUARE project [Xie04] developed a framework for “Cost/Benefit Analysis for
Information Security Improvement Projects in Small Companies” to support decision-making.
To avoid an over-detailed risk modelling, they do not look at single risks and misuse cases,
but treat seven categories of threat (Denial of Service, System Penetration, Sabotage of Data,
Theft of Proprietary Info, Unauthorized Access by Insiders, Virus, Active Wiretapping). Each
category contains several misuse cases, and each misuse case several incidents. Especially in
small companies, the human resources and the data necessary for a more detailed analysis are
not given. Therefore, where not available otherwise, they use financial and probabilistic data
fram annual national surveys for each category of threats. They calculate and compare the
risks, benefits and implementation costs of different combinations of realized preventions and
optimize them. The challenge is to maximize the system value within real-life budget
constraints. We will use their formulas for the prioritization of requirements (which will be
done in working paper 2).
 An overview about taxonomies of attacks is given by Killourhy, Maxion and Tan
[KMT04]. They themselves develop a defense-centric taxonomy for anomaly-based detection,
while the other taxonomies mentioned are attack-centric. They derive the four attack pattern
classes “foreign symbol”, “minimal foreign sequence”, “dormant sequence”, “non-anomalous
sequence”, what is interesting for the development of intrusion detection systems, but will not
considered by us. Aslam [Asl95] for example distinguishs the three high-level classes “coding
faults introduced during software development”, “operational faults with which result from
improper software installation” and “environment faults when a program is used in an
environment for which it was not intended”. We include these categories into our lists of
vulnerabilities and threats. Others classify attacks according to their complexity of the
signature, based on the intended effect (=what we call threat), the technique or means used, or
the level of privilege required by the attacker. Not all of them fit into what we intend to do,
but it is good to keep them in mind.

During the architectural design, for decisions and optimization some authors use the NFR as
decision criteria or optimization goals.
Within the QOC notation [MYBM91], one can equate Question = design problem, Options =
FR, Criteria = NFR.
Bob Blakley, Craig Heath, and members of The Open Group Security Forum published a
catalogue of security patterns and a generic method using them to design a system
architecture starting from given functionalities and a first architecture proposed by a stepwise
optimization with regard to availability and security requirements [BH04]. They use patterns
which describe the assets, threats and vulnerabilities of the system, but in the terms of
“motivation”, “applicability” and “consequences”. They distinguish between resources and
actors. The main difference between their risk analysis and ours is that they analyse a given
first draft of a system architecture, while we do it on the basis of the requirements.
During the EMPRESS project, quality models have been constructed (see [DKVP03] and
[DPB+04]), to link requirements to architecture and to verification and validation. More
concretely, these quality models link quality attributes to means for satisfying them and to
metrics for measuring quality, all in a tree structure. These quality models are intended to help
mastering requirements and system change. Means are principles, techniques, or mechanisms
that facilitate the achievement of certain qualities. Means are described by scenarios, which
consist of stimulus and response, and a metric. Patterns are used to document architectural
options. These lists of means and patterns will be cited by us.

Case study in section 6 was removed because it is confidential

 11

ATAM (=Architecture Tradeoff Analysis Method) evaluates several architectural styles or
solutions against each other, using quality requirements as evaluation criteria. In [KKB+98],
Kazman et al. derive requirements and constraints on scenarios from non-functional
requirements. In [KKC00], they use a terminology of sensitivity points, risks, stimuli,
scenarios and responses, which looks like being symmetric to assets, threats, goals, misuse
cases and countermeasures, although they are used in a different context. For our work in this
paper, we want to keep in mind that Kazman et al. [KKC00] distinguish between customer,
maintainer and developer scenarios, but also between use case scenarios (these involve typical
uses of the existing system and are used for information elicitation), growth scenarios (these
cover anticipated changes to the system), and exploratory scenarios (these cover extreme
changes that are expected to “stress” the system). These types of scenarios are used to probe a
system from different angles, optimizing the chances of surfacing architectural decisions at
risk. The misuse case idea so far only applies to exploratory scenarios, while the misuser is
neither customer nor maintainer or developer. We will consider them all, to be complete. For
instance, some of the quality attributes only make sense when being considered in reference to
maintainer scenarios (like maintainability).

From some more literature sources we use merely their extensive lists of threats,
vulnerabilities and countermeasures, but did not use their concepts or methodology ([BSI89],
[BSI91], [LBMC94], [Ran97], [CC99], [CNYM00], [AER02], [Ric03], [BSI04]).
For example, Chung et al. [CNYM00] decompose quality attributes (called “softgoals”) in
their aspects and derive means. These means we integrate into our lists of countermeasures.
They also prioritize, document relationships and perform tradeoffs between conflicting quality
attributes. They only loosely link non-functional requirements to functional requirements. For
the moment we do no such conflict solving among requirements, but for future enhancements
of our method (see working paper 2), we will certainly return to it.

The terms used by different authors differ a lot. Not only various terms are used for the same
concept, but the same word has different meanings, and different concepts are mixed.
Therefore, we edited table 1 which compares the terminologies used in five different literature
sources. It also shows where we took our terms from.

In this
work

EMPRESS
Quality
Model
[DKVP03],[
DPB+04]

ATAM
[KKC00]

Misuse
Cases
[Fir03b],
[MHN04]

Template of
Sutcliffe &
Minocha[S
M98]

UML
enhancemen
t
[OMG04]

Asset --- (Tradeoff
point)

Asset --- Asset =
target of
evaluation

QA Quality
Attribute

Quality
Attribute
(Response)

--- NFR QoS Cate-
gory

Vulnerabi
lity

--- Sensitivity
Point,
(Architec-
tural) Risk

--- --- Vulnera-
bility

Threat --- --- Threat Expected
failure

Unwanted
incident

Misuse --- Scenario Misuse Case Scenario Threat

Case study in section 6 was removed because it is confidential

 12

Case + damage
Misuser Stakeholder

(customer
and
developer)

Stakeholder
(customer,
maintainer
and
developer)

Misuser Agent Agent

Misuser
Attribute

 --- Stimulus Goal Motivation ---

Counterm
easure

Means Response Use case Countermea
sure

Treat-ment

table 1: The terminologies used in five different sources

3 Generalized Misuse Case Concepts
We chose the misuse case approach as a basis for examining NFR. The original Misuse Case
principle is this: Misuse Cases take the view of a misuser whose goal is to misuse the system.
Misuse cases foresee his/ her behaviour. From these misuse cases new system requirements
can be derived. So misuse cases help to complement the system specification considering
exceptions and threats, not only the intended and successful use.
We adopt the general idea to identify misuses with respect to all quality attributes of ISO
9126 and thereof further requirements which prevent misuse, i.e. help to satisfy the NFR.
Doing so, we found that a more general terminology is necessary, because misuse cases are
tailored to security requirements. By stepping back, we saw that behind the misuse cases and
several other methodologies for analyzing NFR or evaluating different architectures as
described in section 2, there lies a more general principle: An asset is to be protected from a
threat/ misuse, and for doing so, countermeasures are defined. Therefore we think it
appropriate to adopt concepts from these other methods where they make sense. See figure 1
for an overview of our concepts and terminology. We will now look at the definitions of the
single concepts and discuss the generalizations which we thought necessary.

Case study in section 6 was removed because it is confidential

 13

Fig. 1. The MOQARE concepts: see text for definitions and explanation

An asset is any part of the system to be protected. By “system” we include not only the
software, hardware, network, but also the physical building, the company, the administrators,
maintainers and users of the system. The misuse case literature expects “asset” to be “data,
communications, services, hardware components, and personnel” [Fir03c]. ATAM [KKC00]
mainly considers architecture components. For us, assets can be all of these (note: “services”
can also be use cases). But: When data have to be secure, then not only the data, but also the
quality attribute (QA) ‘security’ is protectable. Therefore, it is necessary to combine the asset
with a specific QA or NFR to specify which quality of the asset needs protection. Thus, we
define: It is the combination of an asset plus its NFR or a QA which is to be protected. We
call this pair a quality goal. Usually one will start defining a QA like ‘security’ and during the
discussion come to define a concrete security NFR for the asset. If possible, the NFR should
include a metric to make it measurable, provable and testable.
The reason why the quality goal is to be protected is because it supports important business
goals.
If the asset does not comply to the QA/ NFR, then we call this a quality deficiency. It is not
necessarily the exact opposite of the QA. For example, if the quality goal is “availability of
data”, the quality deficiency can consist in temporary unaccessibility for all users or for
certain users, irreversible destruction of the data, manipulation of the data or hardware, and
many more.
The quality deficiency causes a corresponding business damage which threatens the business
goal.
A threat is an action which would actively threaten the quality goal. It also is the cause of the
quality deficiency. Firesmith lists the security threats “theft, vandalism, fraud, unauthorized
disclosure, destruction, extortion, espionage, trespass” [Fir03c].
The threat is usually performed by a misuser, its driving force. This could be a person (hacker,
users, administrators, etc.), other systems or forces of nature like fire and thunderstorm. In
literature, the misuser often is described by a misuse goal or motivation. This might be the
business damage (i.e. pure destruction), characteristic of the misuser (being disgruntled) or an

Case study in section 6 was removed because it is confidential

 14

advantage for himself like theft leads to the thief owning the haul. As we do not want to mix
goals, damages, etc., we either add the misuse motivation to the misuser description, like in
“disgruntled employee” or in the misuse description (see below). Security is a special case,
where the misuser either is an intruder or a user who executes a use case he/ she is not
supposed to use (e.g. an online shopper “administrating” the account data of other clients,
what is a use case for the system administrator), following a harmful goal, or a careless user
violating security rules. All other ISO 9126 [ISO91] QAs, which we will regard here, are
threatened by regular system users (i.e. end users) who try to use the system as intended, but
fail for some reason. Not only end-users are relevant, but also administrators and maintainers
(see ATAM [KKC00]), and developers. We also need this view because some of the QAs are
only relevant to administrators, maintainers or developers. Most QAs refer to end-users, but
recoverability and portability to administrators, maintainability to maintainers, time and
resource efficiency, suitability and interoperability to end-user, developer, maintainer and
administrator. To identify assets, misusers and threats, not only normal use cases (these
involve typical uses of the existing system) are relevant, but also growth scenarios (these
cover anticipated changes to the system; relevant for maintainability, interoperability, safety
and portability) and exploratory scenarios (these cover extreme changes which are expected
to “stress” the system; relevant for security, reliability, efficiency, recoverability). These three
types of scenarios also were proposed by ATAM [KKC00].
The definition of the term ‘threat’ in literature is not clear. While Firesmith [Fir03c] by this
term describes the anti-goal of a misuser, others [BSI04] mix misusers, forces of nature,
reasons for misuse, vulnerabilities or the consequences of misuse in the same list.
Often, the threat is facilitated, made possible or even provoked by a vulnerability. A
vulnerability is a property of the system and might be a code flaw or a design flaw or a flaw in
the software development process, in operation or management, but also any – even wanted –
property of the system, if it can be misused with respect to the quality goal. For example the
system might provoke user impatience by its bad understandability or only because the user is
used to another type of interfaces. On the other hand, not each system flaw needs to be a
vulnerability. If there is no potential misuser for it, then the flaw is no vulnerability. So a
system flaw or any system property must be evaluated against the quality goal to be protected,
to decide whether there is a potential misuser who might try to threaten the asset´s QA. E.g.,
an open window is not necessarily a vulnerability. With respect to the quality goal “security
of the money on the kitchen table” it only then is a vulnerability, if there is a potential
intruder, i.e. the window is accessible to burglars. Maybe the window is on the 35th floor or is
protected by strong iron bars. On the other hand, the closed window could be a vulnerability
with respect to the QA “fresh air” or “no mildew”. Equally, all properties of a system can be a
vulnerability in one respect or the other.
A misuse describes the whole misuse scenario, including misuser, vulnerability, threat and its
consequences (quality deficiency and business damage). The misuse is documented in the
form and granularity of a misuse case which is similar to a use case. This means they are more
elaborated than threats, which usually are described by a few key words. Misuses can be
expressed as separate misuse cases, but also as an exception scenario being part of a use case.
In the misuse case, the misuser is the actor, the vulnerability a pre-condition, the steps of the
threat are described by a scenario, and the quality deficiency and business damage are the
post-condition of the misuse case. Calling the vulnerability a pre-condition, we assume that
the vulnerability is a necessary (but not sufficient) condition for the threat.
If the asset is a certain data base, its protectable quality attribute its time efficiency, the
misuser an impatient user who needs a report urgently, the vulnerability the inefficiency of the
report, then the threat is the misuser calling the same time-consuming report several times in
parallel and the misuse case the full description of this scenario.

Case study in section 6 was removed because it is confidential

 15

To handle threats and misuses we need countermeasures. We adopt this term from Sutcliffe
and Minocha [SM98] as the most general expression for anything one does against a threat.
Countermeasures can either detect, prevent [SO01] or mitigate a misuse [Fir03b]. The
countermeasures defined by the work we build upon
([CNYM00][DPB+04][KKC00][SO00][SM98]), are new use cases, new or extended
exception scenarios of use cases, use case NFR (including metrics for detecting a misuse),
architectural or other constraints. Countermeasures protect the asset, but they depend on the
special threat and vulnerability. Countermeasures can counteract against the threat, against the
system vulnerability or against the misuse having the predicted consequences. They might
reduce or eliminate the risk, i.e. the probabilities or the damage severity.
In the misuse case literature, one finds eight possible relationships between misuse cases and
use cases (there being meant to represent the assets and the countermeasures). We interpret
“include”, “has exception” [FC99] and “extends” [SO01] as the relation between a use case
and one of its exception scenarios, “threatens” [Fir03b] is the relation of a misuse to an asset,
while “detects”, “prevents” [SO01] and “mitigates” [Fir03b] leads from a misuse to a
countermeasure, and “aggravates” and “conflicts with” [Ale02a] can mean a relationship
among use cases, among misuse cases and between these two. These relationships can help to
derive countermeasures from misuses, but also vice versa.
For prioritizing requirements throughout the concept hierarchy and to prepare trade-offs
between conflicting requirements, we attribute a so-called “relevance” value to all
requirements. This starts with the business goals (they can be rated in a currency, but also
with 0 to 3 points), an evaluation of the threatening business damage, etc. The relevance of
the business damage is the relevance of the threatened business goal times the percentage at
which the damage destroys the business goal. The quality deficiency leading to this business
damage has the same relevance as the business damage, but lowered if it does not always lead
to the damage.
To describe the relevance of a misuse, we assess its risk: the probability of occurrence of the
misuser, vulnerability and threat are defined, as well as the severity of the business damage,
and the probability that this misuse leads to this business damage. As usually exact numbers
or empirical data are not known, relative probabilities can be used (as does Firesmith [Fir03c],
there called “vulnerabilities”) and a simple classification of the business damage, e.g. with 1,
2 or 3 points. Damage can be loss of money, but also of reputation, client and end-user trust.
We build on the common risk formula which is risk = probability of the threat times
probability of vulnerability times damage (see for example [ISO02]). We chose “relevance”
as a more general term than “risk”, as we want to use it also to characterize/ prioritize
business damages and countermeasures.
We more generally say that for producing a misuse, we need the vulnerability (A) and the
misuser (B) as pre-conditions. These might lead to the threat C (defined as an action) to take
place, and this eventually leads to a certain damage D. According to the rules of probability
calculation and assuming that A and B both are necessary but not sufficient pre-conditions of
C, this leads to a conditional probability of the damage to be caused

p(D) = p(A∩B) · pA∩B(C) · pA∩B∩C (D)

If the probabilities of A and B are independent, then p(A∩B)= p(A) · p(B) with p(A) =
existence of vulnerability and p(B) = existence of misuer with given characteristics, (as
sometimes not simply a user, but an impatient user is the actor of a misuse). The conditional
probability pA∩B(C) denotes the probability that the threat is performed if both the
vulnerability is given and the misuser exists. pA∩B∩C (D) describes the probability that misuser
and vulnerability given, the threat happening, that expected business damage D is caused. As
has been done in the risk formula, we multiply this probability p(D) with the severity s(D) of

Case study in section 6 was removed because it is confidential

 16

the damage to calculate the relevance of a misuse consisting of vulnerability A, misuser B,
threat C and business damage D:

Relevance = p(A∩B) · pA∩B(C) · pA∩B∩C (D) · s(D)

For prioritizing requirements, the relevance of a countermeasure will also play a role. We
define the relevance of a countermeasure to be equal to the relevance of the misuse if the
countermeasure does prevent the misuse totally. Otherwise it is equal to the difference
between the relevance of the misuse without the countermeasure and the value with the
countermeasure working. I.e. if the countermeasure reduces the probability of the misuse by
30%, then the relevance of the countermeasure is the relevance of the misuse multiplied by
30%.

4 The MOQARE Method
For now, we have not given any method or direction on how to derive these concepts
described in section 3, but only showed how they relate to each other. This section proposes a
method which finally has worked well in our case study (see section 6). Its purpose is to
define new requirements like FR, NFR, constraints and further requirements supporting or
assuring that the asset has the protectable QA, by considering misuses.
Our concepts could also be used to decide between given architectural alternatives by
evaluating them against the quality goals, but this is not the focus here.

MOQARE starts with the functional requirements (i.e. functional description) of a planned or
existing system. The requirements engineer is guided by a four steps process and supported by
checklists. In this section, we outline the procedure of the method, the checklists are given in
the annex. The procedure identifies the concepts in the following order, which is not to be
understood as an obligatory order but rather a guideline. As requirements elicitation is a
creative activity, the steps can also be performed iteratively, and they even must be repeated if
a countermeasure is a new quality goal.

1. find the quality goals (based on business goals, quality deficiencies, and business
damages)

2. describe misuses (based on threat, misuser, vulnerability)
3. define countermeasures
4. if necessary, re-start the cycle

1.) A quality goal (= an asset and QA) is valuable because it supports a business goal.
Therefore, it makes sense to start with the definition of the business goals. What is the
essential of your business? This might be a business process or a business goal like “30% of
market share”. According to Regev and Wegmann [RW05], there are the following types of
goals:

o achievement goal: “Achievement goals are objectives of an enterprise or
system” and: “An achievement goal is satisfied when the target condition is
attained.”

o Maintenance goal: property that holds in current and all future states
o Avoidance goal: specifies a state that is to be avoided
o Softgoal: “a condition or state of affairs in the world that the actor would

like to achieve, but unlike in the concept of (hard) goal, there are no clear-
cut criteria for whether the condition is achieved, and it is up to subjective

Case study in section 6 was removed because it is confidential

 17

judgement and interpretation of the developer to judge whether a particular
state of affairs in fact achieves sufficiently the stated softgoal“ [ITU01]

o Belief: “Beliefs are used to represent design rationale. Beliefs make it
possible for domain characteristics to be considered and properly reflected
into decision making process, hence facilitating later review, justification
and change of the system, as well as enhancing traceability” [ITU01]

Dardenne, van Lamsweerde and Fickas [DVF93] define the following goal patterns:

o Achieve: a property which holds in current or some future state
o Cease: a property which holds not in current or some future state
o Maintain: a property which holds in current and some future states
o Avoid: a property which holds neither in current nor in some future states
o Optimize: maximize or minimize an objective function

The following list gives a summary of techniques for identifying stakeholders´ goals [RW05]:

o Understanding stakeholders´ problems and negating them
o Extracting intentional statements from:

o Interview transcripts
o Enterprise policies
o Enterprise mission statements
o Enterprise goals
o Workflow diagrams
o Scenarios written with stakeholders

o Asking “how” and “why” questions about these initially identified goals in order to go
up and down the goal hierarchy

o Asking “How else” questions to identify alternative goals
o Searching for action words that describe a state that is to be achieved, maintained,

avoided, etc. (keywords for achievement goals: achieve, make, improve, speedup,
increase, satisfy, complete, allocate; keywords for maintenance goals: maintain, keep,
ensure, avoid, know, monitor, track, provide, supply, found out)

o Asking what goal a given statement exemplifies and what goals are blocked or
obstracted by a statement

o Asking why an identified goal is to be achieved or maintained
o Looking for statements that guide design decisions at different levels of the IT system

or enterprise
o Considering pre and post conditions of already identified goals
o Using domain knowledge
o Identifying goal obstacles and constraints
o Considering possible scenarios for goal achievement and obstruction

After having identified the major business goals, think of what quality deficiency might
threaten them and cause which quality deficiency and business damage. For doing so, we use
the ISO 9126 [ISO91] hierarchy of quality attributes as a checklist (see annex A.3). We use
the two levels of this standard and include a third level for security as described in the annex.
A quality deficiency can be the complete or the partial or temporary lack of the quality
attribute. Probably all quality attributes must be satisfied to a certain degree, but which of
them do you want to study more closely, which are essential for the business, which quality
want you to be designed into the system or being protected to an especially high degree?
Each quality deficiency will lead to a certain business damage. Prioritise these business
damages according to their severity (for example by attributing 1, 2 or 3 points), where the

Case study in section 6 was removed because it is confidential

 18

high value must be attributed to the high damages. This weight factor will be used later-on for
prioritization of NFR and for trade-offs in case of conflicting requirements.
To deduce the quality attribute to be protected from the quality deficiency is straightforward.
Now for each quality attribute derive the affected assets. An asset can be domain data, roles,
system/ hardware/ software components, tasks, activities, use cases or services,
communications (computer network or interfaces). The granularity of assets is different in
various literature sources. One might name “data base” but also factorize further and name the
use case “archiving” or the system component “user interface” or “database table ‘credit card
numbers’”. As a checklist, you can use the list of assets in annex A.2 or the hierarchy of assets
given in A.5. Of course, it is far from being exhaustive, but it helps to think about the specific
assets in your system.
The result of this high-level threat analysis will be the quality goals (= asset + QA) to be
protected, like “confidentiality of credit card number” or “availability of web shop” or “time
efficiency of a use case Y“.
As can be seen in figure 1, the relationships among the concepts are complex and can not
easily be depicted in the form of a tree. It as well makes sense to present, for each business
goal, the business damages and quality deficiencies which threaten it (as has been done
above) or, vice versa, think about which quality goals support the business goal. Both ways
will lead to the quality goals which describe high-level quality requirements for the system.

2.) Describe misuses in the form of a misuse case: A misuse case is described by an action
(threat), the actor (misuser), a vulnerability (pre-condition) and the quality deficiency or
business damage caused (post-condition).
We consider the context of user use cases (these involve typical uses of the existing system
and are used for information elicitation), growth use cases (these cover anticipated changes to
the system), and exploratory use cases (these cover extreme changes that are expected to
“stress” the system), as was proposed by ATAM [KKC00]. For our application, this also
makes sense, as maintainability and portability refer to growth use cases, security to
exploratory use and usability to normal use.
As the same threat can be performed by several different misusers with a different course of
event (e.g. overload produced by a hacker performing a denial-of-service attack or an
impatient user starting the same request several times), we start with the identification of the
threats and might then derive one misuse case per misuser. In the literature, lots of potential
threats are known. We expect them to be reusable. Therefore, we have gathered many of them
in checklists. For each quality attribute, there is a separate threat list (see annex A.4). Theft
for example threatens availability and confidentiality, but never usability or efficiency.
These lists also contain proposals for the potential misusers and countermeasures. For some
threats, there are several versions like the “intentional data corruption by intruders” and the
“unintentional data corruption by user”. For your system, you probably can express more
clearly who the misuser can be, like “accountant”. Think of criminals as well as normal users,
maintainers and administrators. Think of destructive goals and ignorance. Don´t forget forces
of nature, other systems, or the system environment (technical, social, political, etc.). For
practical work, you probably won´t want to identify all potential misusers, but only those who
are most relevant, i.e. those with the highest probability or who cause the most harmful
damage.
The threats are facilitated by vulnerabilities, or the misuser exploits a vulnerability. For a
given asset, like a data base or a certain operating system, many potential vulnerabilities are
known. Therefore it should be possible to compile reusable lists of vulnerabilities and their
countermeasures. They can be used as checklists for not forgetting the best-known
vulnerabilities and to get ideas about further vulnerabilities. Here, you will also concentrate
on the most relevant ones. In annex A.5, you find such lists of known vulnerabilities in

Case study in section 6 was removed because it is confidential

 19

different assets. We believe that these lists need not be compiled for each quality attribute
separately, but depend mainly on the asset, as the same property/ vulnerability can be misused
with respect to different QAs.
In the post-condition of the misuse case, document the quality deficiency or business damage
caused by the misuse. They are also given in the threats checklists.
For later trade-off among contradicting requirements, the relevance of a misuse is calculated
according to the formula
Relevance = p(A∩B) · pA∩B(C) · pA∩B∩C (D) · s(D)
as was described in the preceding section.

3.) Define countermeasures:
For each misuse case, try to find countermeasures against the threat, the misuser, the
misuser´s motivation, the vulnerability and against the business damage. Countermeasures
can either detect, prevent or mitigate. They can be use cases, new or extended exception
scenarios of use cases, use case NFR (including metrics for detecting a misuse), services,
architectural constraints, user interface constraints, constraints on project/ software
development, constraints on maintenance, or another quality goal. Often, it makes sense to
add a metric to the countermeasure.
Our lists of threats and vulnerabilities also provide countermeasures (annex A.4 and A.5), but
we do not claim them to be complete. Moreover, they are quite general, while the ideal
countermeasure is concrete, realisable and often also system-specific.

4.) if necessary, re-start the cycle at step 2
A countermeasure can also be a new quality goal. For example the usability of the user
interface helps to improve the integrity of the data entered by the users manually. In this case,
the elicitation of NFR is not finished when finding all countermeasures but must start anew
with the newly defined quality goals.

This method leads to hierarchical results which can be presented in the form of a tree, a
“misuse tree”, similar to attack trees [LBDJ03] and quality models [DKVP03][DPB+04] , but
with different concepts. Such a tree presentation makes sense because for each business goal,
there are several business damages, quality deficiencies and quality goals, for each quality
goal several threats and for each threat several countermeasures.
A misuse tree has the following levels, from top to bottom:

o business goal
o quality deficiency
o business damage
o quality goal
o misuse (including threat, misuser, vulnerability, quality deficiency, business damage

and relevance)
o countermeasure
o quality goal
o misuse
o countermeasure
o …

An example of such a misuse tree can be seen in the case study.
The derivation of the assets and QA could be seen as a first cycle of threat analysis on the
business level, which bridges the gap to the requirements. On the requirements level, the
analysis of threats often leads to countermeasures which are quality goals themselves, so a

Case study in section 6 was removed because it is confidential

 20

new cycle begins. We do not know by now, how many such levels or cycles one can find by a
thorough investigation of a complex system, but the number of combinations of asset +
quality goal is finite (= “number of possible assets” times “number of quality attributes”), and
somewhere there will be loops, when quality goals are repeated or at least countermeasures
re-appear.

This analysis can be performed in two alternative ways: If the goal is acomplete analysis of all
potential threats (actual, future, already prevented, unprobable), then all potential threats are
considered, and the probability and damage estimated later-on. But in practical work, one
often wants to analyse the actual quality of the system (or system draft) and the potential ways
of efficient improvement. Then, a threat or a vulnerability is not relevant to be considered, if
there is already an effective countermeasure foreseen against it. In the case study, we
concentrated on relevant misuses, i.e. with significant probability and damage.

5 Integration of MOQARE with TRAIN

The software engineering group at the University of Heidelberg, for software requirements
engineering uses a methodology called TRAIN which is supported by a tool named Sysiphus
(see: http://sysiphus.informatik.tu-muenchen.de/). TRAIN not only concerns the requirements
but also design and testing of software, i.e. the whole software lifecycle. But here we refer to
the requirements part of TRAIN only.
In section 5.1, we give a description of the TRAIN elements describing FR. Then, in section
5.2, we describe how NFR are captured within this framework and how they are integrated
with the FR, and especially how our misuse case concepts fit here.
We expect that MOQARE can also be integrated into other methods for elicitation of FR, as
has been done for the security analysis only by Breu (Integration of security analysis into the
use case based PROSECO) [BBH03][Bre05] and Meyer, Rifault and Dubois (integration of
risk analysis into i*) [MRD05].

5.1 Functional Requirements in TRAIN

TRAIN describes requirements on four levels: Task Level, Domain Level, Interaction Level
and System Level (see figure 2).

Case study in section 6 was removed because it is confidential

 21

figure 2: levels of TRAIN

Task Level
On the Task Level, decisions about Tasks and Roles/ Actors are taken (Actors are persons
and systems which take part in the supported processes), without defining here which tasks
later-on will be performed by the system and which one by the user. The role and task
descriptions represent the FR on task level.

Domain Level
On the Domain level, the tasks defined on Task Level are detailled in smaller steps
(Activities). The activities/ business processes as they are right now (“as-is”) as well as the
activities “to be” are defined. Only the tasks determined on the Task Level are considered
here. On this level, it is decided how the business process will change by use of the IT system.
Those activities to be supported by the system are identified (System Responsibilities) as
well as the data to be managed by the system (Domain Data).

Interaction Level
The Interaction Level focuses on the human-machine-interface. Here is decided how the user
interacts with the system. Therefore, the structure of the workspaces is defined (UI structure:
In which context is the user allowed to call which functions and data) and how (e.g. in which
order) the user performs her/ his activities with the system (Use Cases). For allowing this, the
system is to provide Services (System Functions) which are also described here. The data
model is refined here, describing how the data exchanged and manipulated between and by
user and system are related to each other and on which user interfaces they are to be
accessible.
One use case can contain several scenarios: the main success scenario and alternative
scenarios for describing variations and exceptions. A Scenario describes one potential
specific event flow of a use case. It is an instance of a use case. Vice versa, a use case is the
abstract description of a finite set of scenarios.
Services document which data are the input, which are manipulated by the operation, how the
result is to be calculated, which exceptions are to be expected, etc.. On the interaction level,
they are still described from the user viewpoint and do not represent a technical specification.

Case study in section 6 was removed because it is confidential

 22

System Level
On the System Level, a blueprint for a technical realisation is prepared. The aim of this level
is to allow a structured, flexible realisation of the specification in a specific technology (e.g.
object orientation). Here, decisions are taken about the graphical user interface (GUI) and the
Application Core. The GUI part contains considerations concerning the user interface
structure and navigation, while in the area of the application core, the transition from
requirements specification to object oriented analysis is performed. The result of this process
is an analysis class diagram, which serves as the basis for the detailed design. For this, in the
TRAIN process a method by Ivar Jacobsen (OOSE) is applied, which uses the artefacts
already realized as input, especially the domain data diagram respectively refined data model,
the use cases and system functions, for developing the so-called analysis class diagram.

5.2 Integrated Method

TRAIN allows the documentation of FR and NFR, and MOQARE derives as well NFR as FR.
How can the two methods and their results be integrated? As will be described in more detail
in our case study, we started with the business goals and a description of the FR. This
functional description and business goals are the basis of the Misuse analysis, as otherwise no
assets or misuses can be defined. If you do not know what is to be protected, you do not know
what could potentially happen. The functional description of the system need not be complete.
A description of tasks and domain data would be sufficient, but the more detailed the
functional requirements are known, the more detailed the misuse analysis can be performed
also.
Then, MOQARE followed and starting from the business goals derived business damages,
quality deficiencies, quality goals, misuses and countermeasures. The results of this analysis
can be and should be presented in two presentations: firstly, there will be the misuse tree
which shows the logical relationships of the concepts of MOQARE. As the countermeasures
derived can be of different types (e.g. new functional requirements, constraints on FR etc.)
they should also be arranged according to their type. This can be done by integrating them
into the presentation of the FR, here the TRAIN levels.
When a countermeasure is a new quality goal, then a new iteration of MOQARE starts to find
the misuses threatening this new quality goal.
If a countermeasure is a new FR, then a new TRAIN cycle might be started. Is the new FR a
task, for instance, then it will be detailed into new activities, use cases, maybe add domain
data, etc.. These new requirements can lead to new misuses which now must be included into
the misuse tree.
This means that not only all consequences of new requirements must be considered, but also a
regular review of the requirements with respect to completeness will make sense.

5.3 Non-functional Requirements in TRAIN

On all four levels of the TRAIN process, NFR respectively constraints can be captured, for
example task constraints or use case constraints. To allow an extensive and systematic
treatment of NFR, we now integrated the MOQARE concepts into the TRAIN levels, as is
shown in figure 3.
This makes sense because the analysis of the FR as well as MOQARE lead to use cases or
constraints, and if a sensible trade-off of requirements is to be done, this is only possible
based on an integrated presentation of all requirements.

Case study in section 6 was removed because it is confidential

 23

figure 3: levels of TRAIN, including the Misuse Cases and Quality Constraints

On all levels

A concept which can not be attributed to any specific level of TRAIN, is the quality goal
(asset + QA), because assets can be found on all levels. An asset is no new concept, but
existing concepts are chosen to be important enough to be called an asset. Assets can be roles
or tasks (domain level), data, activities (domain level), use cases and user interfaces
(interaction level) or services, hardware or software components and their communication
(system level).

Countermeasures can also be found on all levels because they can be: tasks or activities,
quality constraints on tasks or activities, use cases or services, new or extended exception
scenarios of use cases, use case or service constraints (including metrics for detecting a
misuse), architectural or other constraints like Constraints on User Interface.

Task Level
On this level, which is the business level, we see the right place for the business goal and the
business damage. The tasks can be constrained by “Quality Constraints of User Tasks”,
which might result from the threat analysis as a countermeasure or/ and be part of a quality
goal where the task is the asset and the “Quality Constraints of User Task” the quality
attribute. These two alternatives exist for all other constraints described below.

Domain Level
On the Domain Level, one can define Domain Constraints, which are constraints typical to
the application domain respectively environment of the system, like the time pressure on the
system users. These domain constraints often show up to serve as vulnerabilities within the
misuse analysis. Domain Constraints can also be neutral information like the number of

Case study in section 6 was removed because it is confidential

 24

system users, or other influences from outside like political, market related, standards,
technical strategies, cultural, organisational or physical constraints.
Similar to tasks, Activities also can be associated with “Quality Constraints on Activities”,
which also can express a countermeasure or/ and be part of a quality goal.

Interaction Level
Use Cases as well as Services can have their “Quality Constraints on Use Cases” and “Quality
Constraints on Services” respectively.
The Misuse Case finds its place on this level. It has a similar form as the Use Case. The main
difference between these two is that the Use Case describes the wanted behaviour and the
Misuse Case what must not happen. Therefore, it is tied to one or several countermeasures.
There are two alternatives concerning the representation of Misuse Cases. They can be
represented as a separate Misuse Case, but also can be described by an exception scenario of a
Use Case. This is because many misuses happen during normal use. Even if a normal user
tries to manipulate her collegue´s account data without permission, we could consider this to
be a special scenario within the use case “manipulate your own account data”. We decided to
model misuses always by separate Misuse Cases because for a complete misuse description
we need not only its steps but also vulnerabilities (pre-condition), damage/ quality deficiency
(post-condition) and links to the countermeasures. As the use case describing the normal use
will have its own pre- and post-conditions, there is danger to mix up normal and unwanted
use. Therefore, we rather advice to link misuse cases to the use cases which they represent an
exception of.

System Level
On this level, “Architectural Constraints” and “User Interface Constraints” are contained,
which frequently are countermeasures.

6 Case Study

The method(s) described above were applied to one software system, the Uveitis database. In
section 6.1 only the FR are described, on the task, domain and interaction level. In 6.2 the
MOQARE is applied to define the NFR, on the basis of the functional description of section
6.1. This leads to a “misuse tree” which shows the causal dependencies between the analysis
results. In section 6.3, examples for the integrated results are shown.

[…]

6.1 Discussion of the results and the course of the case study

What do we learn from this analysis? We can compare our results with former experiences
with the same case study where we did an unstructured analysis or used former versions of the
method described here.
The method supports a systematic investigation of non-functional requirements, based on and
integrated with the functional requirements. It was well guided by the four steps of concept
elicitation and by the checklists. The idea of the method could easily be understood by the
stakeholders. Problematic was the estimation of probabilities and costs, as they were not easy
to estimate and a lot of numbers were necessary. This made the procedure hard from the
moment on when the relevance values were to be estimated. A support by standard values
(e.g. statistical averages) would be nice, but hardly be feasible as the conditions of the specific
environment must be considered.

Case study in section 6 was removed because it is confidential

 25

Although the resulting misuse tree looks complex and extensive, it is much clearer and more
compact than our first unstructured approaches. Therefore, we believe that it is the most
simple representation of the complex results of a complete NFR elicitation.
In an older version of the method, we only analysed the system, without relation to the
business goals. This led to an unstructured list of quality goals, which was probably not
complete, but its completeness could not be judged. The list also included redundancies like
when a use case must be usable, then the user interface used in this use case also must be
usable. When finally starting with the business goals, we first find quality goals which
directly support the business goals, and then – on lower levels of the misuse tree – such which
support them indirectly. This does not only lead to a clear prioritization among quality goals,
but also helps to find all of them, because they all must be related to the business goals in
some way and appear in the misuse tree. The prioritization was quantified by calculating the
“relevance” of quality goals, misuses and countermeasures. No such redundancies as
mentioned above were observed.
In the misuse tree, you find the different quality attributes (QA) and see how they are all
related to each other. For example data integrity depends both on security and on usability,
and usability depends on time-efficiency. Therefore it makes more sense to regard all quality
attributes in an integrated approach, not ignoring the special knowledge from the HCI
community concerning usability or from the security community, but integrating them.
It made sense to present the results of the analysis in a tree as each quality goal is threatened
by several threats and each threat has several countermeasures. But sometimes loops did
appear. For example, the authorization concept is a countermeasure against two threats (both
threatening the quality goal “data + integrity”). And secondly, the integrity of the data is
threatened by the threat “unintentional corruption of data”. As one of the vulnerabilities
leading to this threat would be the non-availability of the data or software, one of the
countermeasures is the quality goal “data + availability”. But this goal again is threatened by
“lack of data integrity” and protected by the quality goal “data + integrity”. Here, we enter
into a loop.
As we decided to do an iterative requirements elicitation, at each iteration former versions of
the misuse tree could be used as an interview guide for the next iteration which consisted in a
review of the former results and then a branch was chosen where the interview was to
continue to bring forth new results. Also, approximate estimations about how much of the
results were still missing, could be done by counting the number of quality goals still being
without threats and countermeasures (knowing that the leaves of the tree always are
countermeasures and that further quality goals can arise as countermeasures).
As the aim of the analysis is to find system specific, realizable requirements, the checklists
provided by us are a good support for creativity, but the domain-specific wording should
always be preferred. During the analysis, we often reached points in the tree where quality
goals were defined which could be satisfied by known solutions which do not depend on the
special software investigated. Take for example the intrusion of hackers. As countermeasures,
one can propose intrusion detection and all measures which prevent intrusion or at least make
it more difficult. Such solutions are known. Sometimes there exist products on the market,
like intrusion detection software, or handbooks or specialists can tell a whole bundle of
countermeasures to be taken to prevent intrusions. This was the point at which we stopped the
analysis. The corresponding countermeasures can be taken from our general lists in the annex
and the specialized literature concerning for example intrusion detection and prevention.
Some countermeasures at first looked trivial and common-sense like “compliance to known
usability rules” or “good testing”. But if our aim is a complete description of all requirements,
then this is a good result and shows that this method helps to also derive the “tacit
assumptions” so much seeked for by requirements engineers. We believe that the logic behind
this observation is this: These trivial requirements are considered to be trivial, because they

Case study in section 6 was removed because it is confidential

 26

prevent misuses which are relevant to most software systems. But nevertheless, they are
important to protect a business value. Otherwise, they would not have appeard in our analysis.
Not only requirements referring to the software were discovered, but also requirements and
constraints on the software development process or the project. This not only happened,
because we explicitly included them from the beginning, but also because they are relevant to
quality. Software quality is the result of good software development and good project
management, and therefore the analysis would not be complete without such requirements.
Some use cases which represent countermeasures refer to tasks like data cleansing or
maintenance, i.e. to tasks usually not included in a requirements analysis. But it now seems
obvious to include them in the description of requirements to be complete, as data cleansing
and maintenance in fact are tasks one wants to perform in the system, as well as the support of
the functional requirements which support the business processes. Why? Because these tasks
not only improve the system quality, but are necessary to sustain the quality level of the new
system. In a dynamic environment the quality of a system can be expected to decrease if it is
not maintained!
We started with 14 use cases, but the number of the misuse cases counts several dozens. We
can not give the exact number. As we mentioned above, the analysis was stopped at those
points where the discussion starts being too general and standard solutions are known. For
example, one can think of many, many misuse cases for intrusion into the network, depending
on the vulnerability which is misused.
In the case study, one soon could see that some misuses are clearly more relevant than others.
The relevance values look like a good means to prioritize countermeasures. Sometimes,
though, during the case study when comparing the values for different countermeasures, they
did not seem appropriate. This is to be expected because they are calculated from several
factors which are not easy to quantify. Therefore, it made sense to compare the relevances of
different countermeasures and to compare their expected order. Then a re-estimation of the
probability and relevance values was made.
Not considered here so far are the risks and adverse effects of countermeasures. This would
be possible, but has been done for only one case, as can be seen in the lowest line of the
misuse tree. For the configuration of the handheld, two alternatives are possible, each of
which leads to another threat (either creating of doublets or loosing data input on the
handheld). Such threats provoked by a countermeasure will be important for the trade-off of
requirements, but is not important in this working paper. It will be treated later. It is the same
for other relationships between countermeasures. For example, the “user training about
security policy” only makes sense after “define security policy”, although it was attributed a
higher relevance value, because the mere definition of a policy does not improve much by
itself. Such questions are delayed to working paper 2.

7 Perspectives for Further Research
MOQARE has been used successfully in a case study for a software which already exists and
has been used in pilot operation. We would also like to use it already in the phase of
requirements elicitation or software design to see how well one can predict potential misuses
with the aid of this method.
In the next step, we will have a closer look at conflict identification and negotiation, for
conflicts among functional and non-functional requirements. How to find the requirements to
be implemented? Not only the relevance and cost of countermeasures as defined above will be
important, but also to consider threats provoked by countermeasures and dependencies among
them like chronological order. We will also integrate the requirements analysis as described
above with the following step in software engineering, the architecture design. The

Case study in section 6 was removed because it is confidential

 27

requirements presentation developed in this working paper will be an important input for the
trade-off between requirements and for the architectural design.
Furthermore, the generation of test cases out of requirements will be interesting, especially as
the NFR must not be forgotten.

8 Summary of the Paper
This paper develops concepts and a method for a systematic analysis of NFR of a software
system. This approach is based on the concept of misuse cases and on reusable lists of threats,
vulnerabilities and countermeasures. This method can be used either separately when already
knowing the FR, but also integrated in the method for elicitation of FR. Here, we integrated it
to the TRAIN method.
The elicitation of non-functional as well as functional requirements is illustrated by applying
them to a case study. We believe that an analysis of NFR in terms of quality goals, threats and
countermeasures helps to complement software and project requirements. To support a
complete view on system quality (in particular all QAs), we consider not only end-users, but
also system administrators, maintainers and intruders to the system. We take account of use,
growth and exploratory scenarios. An important value of our approach is its general
applicability to all QAs and the integration of NFR and FR. We believe that the requirements
analysis and documentation method described in this paper has been optimized with regard to
understandability, clarity and completeness of results. By including a quantitative measure for
the relevance of a misuse and countermeasure, we set the basis for requirements prioritization
and trade-offs in case of conflicting requirements (which is not treated in this working paper,
but in the next one).

Case study in section 6 was removed because it is confidential

 28

Annex A Checklists

It was proposed by Firesmith [Fir03c] to compile reusable lists of threats and
countermeasures, as similar threats are relevant to different systems, and many
countermeasures are already known. As we have seen in section 4, such lists can well
complement a systematic method for NFR assessment. Our lists presented here, are meant as
checklists, i.e. suggestion and help, which can be used for applying to a concrete system.
They are not meant to be complete, but they are a synopsis of the results of several reliable
literature sources.
Below we summarize our checklists used in the method described in section 4.
This annex section contains the following lists:

1. business goals
2. assets
3. QAs
4. for each QA a list of threats and their countermeasures
5. for each asset a list of vulnerabilities and their countermeasures

Alternatively, we might have provided for reusable lists containing whole misuse patterns, for
each pair of an asset plus QA the corresponding vulnerabilities and threats and their
countermeasures. This would be easier to use. But we did not do it for several reasons, the
two most important are: While there is a manageable number of QAs and assets, the number
of the combinations is quite high. So, our lists would have taken much more space than they
do anyhow. Secondly, we mainly wanted to summarize the knowledge of others, not write an
exhaustive treatise about security, usability etc.. As our sources did not provide information
which fit the pattern we use, it would have demanded well-founded expertise to bring them
into such a form and fill in the gaps left open by the sources. This we did not want to do but
leave this to the specialists. We mainly provide for the method, not the content. These lists are
our attempt to categorize and re-use the knowledge of others.

A.1 Business Goals

For identifying the business goals, the following categorizations can help:

• Goals belong to the following five dimensions [Wie02]:
o Product size
o Quality
o Staff
o Cost
o (calendar) time

• goals can belong to different viewpoints, e.g. according to the Balanced Scorecard
[KN92]
o Financial
o Customer
o internal processes
o learning & growth

Case study in section 6 was removed because it is confidential

 29

or to the Balanced IT Scorecard BITS [Iba98],[BAM01]

o Financial: How do our software processes and SPIs add value to the company?
o Customer: How do we know that our customers (internal and external) are

delighted with our product?
o Process: Are our software development processes performing at sufficiently high

level to meet customer expectations?
o People: Do our people have the necessary skills to perform their jobs and are they

happy doing so?
o Infrastructure & Innovation: Are process improvement, technology and

organisational infrastructure issues being addressed with a view to implementing a
sustainable improvement program?

• One can distinguish the following goal patterns [DVF93]:

o Achieve
o Cease
o Maintain
o Avoid
o Optimize (maximize or minimize)

A.2 Assets
During our literature research, we found that all assets belonged to the groups
“data, communications, services (might be use cases), hardware components, personnel” as
defined by Firesmith [Fir03c].

Others know “seven categories of targets: The first three of these are “logical” entities
(account, process or data), and the other four are “physical” entities (component, computer,
network, or internetwork).” [HL98]

In the terms of the TRAIN concepts, our checklist reads like this:

o domain data
o roles
o system components
o hardware components
o software components
o tasks, activities, use cases or services
o communications (computer network or interfaces between systems)
o user interfaces

For practical use, more concrete assets will be necessary. Many examples will be named in
section A.5.

A.3 List of QAs

Case study in section 6 was removed because it is confidential

 30

Following the standard ISO 9126 [ISO91], we started with this hierarchy of QAs:
o Functionality (Security, Suitability, Accuracy, Interoperability, Compliance)
o Reliability (Maturity, Fault tolerance, Recoverability)
o Usability (Understandability, Learnability, Operability)
o Maintainability (Analysability, Changeability, Stability, Testability)
o Portability (Adaptability, Installability, Conformance, Replaceability)
o Efficiency (Time behaviour, Resource behaviour)

Security/ safety we factorize further into availability, integrity (completeness and accuracy),
privacy/ confidentially, and operational security [CNYM00], and: immunity, survivability
[Fir03c]. Reliability will be regarded in terms of Maturity and Fault tolerance, and separately
in terms of Recoverability. The two aspects of Efficiency (Time behaviour, Resource
behaviour) will also be treated separately.

DIN EN ISO 9241 [ISO92] in part 9241-10 lists seven criteria for usability:
− suitability
− understandability
− operability
− conformance to expectation
− Fault tolerance
− customizability
− learnability
We find them in ISO 9126 also (see above), but differently structured. This shows, that
different classifications would make sense.

So, our hierarchy finally has the following three levels:

o Functionality
o Security

 Operational security
 Availability
 integrity (completeness and accuracy)
 privacy/ confidentially
 immunity
 survivability
 safety

o Suitability
o Accuracy
o Interoperability
o Compliance

o Reliability
o Maturity
o Fault tolerance
o Recoverability

o Usability
o Understandability
o Learnability
o Operability

o Maintainability
o Analysability
o Changeability
o Stability

Case study in section 6 was removed because it is confidential

 31

o Testability
o Portability

o Adaptability
o Installability
o Conformance
o Replaceability

o Efficiency
o Time behaviour
o Resource behaviour

A.4 QAs with lists of threats and their countermeasures

QA: Availability

Threat ->
consequence

Misuser countermeasure

Theft ->
permanent loss
and non-
availability of
asset (hardware,
service, etc.)

Thief, e.g.
employee, external
personnel, spy

physical protection (e.g.
locked doors and windows,
alarm system, monitoring,
video surveillance), other
security measures, building
plans must not highlight
assets, doorman, patrols,
control and restrictive
handling of physical access
rights, appropriate key
management, supervision or
monitoring of external
personnel

Vandalism,
destruction ->
permanent loss
and non-
availability of
asset (hardware,
service, etc.)

Hacker, disgruntled
employee, cyber-
terrorist, vandal

Like above

error, like
unexpected input
or switch-off of
server during
operation ->
system
breakdown ->
temporary system
unavailability

user, administrator,
maintainer

Reliability and fault
tolerance,, monitoring,
training and documentation,
control and restrictive
handling of access rights to
software, interdiction of use
of software being not
released internally

error like
erroneous
deleting of data,
incorrect saving
of input data ->
Loss of data

User, administrator,
maintainer

Usability, foresee potential
user errors, control and
restrictive handling of
access rights to software,
interdiction of use of
software being not released

Case study in section 6 was removed because it is confidential

 32

internally
Damage of
hardware by
accident ->
destruction of
data, data base or
hardware, data
loss

thunderbolt, fire,
water, cable fire,
undue temperature
or humidity, dust
and dirt, technical
catastrophe in the
periphery, big
event, storm

Physical protection against
storm, thunderbolt, water,
fire, dust and dirt,
redundancy, air
conditioning, compliance to
fire prevention rules, hand
fire extinguisher, safety
doors and windows, room
assignment regarding fire
loads,
Fire-retarding ceiling, fire
prevention inspection,
automatic de-watering,
doorman, patrol, Video
surveillance, alarm system,
avoiding of water tubes in
critical areas, highly
sensitive early fire detection,
up-to-date infrastructure and
building plans, smoking ban

Demagnetization
of magnetic data
carriers -> data
loss from
magnetic data
carriers

strong magnetic
field

Magnetic shielding

Damage of data
carriers strong
light -> Data loss

strong light Physical protection

heavy usage ->
system
breakdown or
data loss

several regular
users

Foresee heavy usage, load
tests before release;
redundancy, modularisation

backup restorage
takes long or is
complicated by
design -> High
effort for system
recovery and long
time of system
non-availability

Developer, designer Modularisation of system
and backup

backup restorage
takes long or is
complicated
because of data
load -> High
effort for system
recovery and long
time of system
non-availability

maintainer archiving of unused data

Case study in section 6 was removed because it is confidential

 33

Undiscovered
system
breakdown ->
System not
available until
breakdown is
discovered and
system recovered

administrator monitoring

Sources: [Fir03c],[BSI04]

QA: Integrity in terms of Accuracy

Subfactors: accuracy = consistency between application and domain, i.e. timely accuracy (of
time interval), OneToOneAccuracy (one object in the application corresponds to one and only
one entity in the domain), ValueAccuracy, PropertyAccuracy, Consistency (external and
internal) [CNYM00], p.165f

Threat ->
consequence

Misuser countermeasure

Use data format
(type, dimension,
initial value,
default value, unit,
resources, scope)
inadequate for
domain data ->
stored data are
useless or
insufficiently
accurate

Developer,
requirements
engineer

Systematic domain analysis,
requirements engineering
and system design

inaccurate
calculations,
calculation flaws -
> Inaccurate
results, in worst
case useless

developer

programming rules
(constraints on the
programming process),
developer training, testing

Other errors
leading to
inaccuracy ->
Inaccurate data, in
worst case useless

developer attribute, from part to whole,
explicit aggregation,
accurate information
reception, superclass, subset,
conservation, subtype,
attribute selection, derived
info, correct information
flow [CNYM00], p.168ff

Functional bugs in
requirements and
features: bugs
having to do with
requirements as
specified or as

Requirements
engineer

Good requirements
engineering, including
verification and validation

Case study in section 6 was removed because it is confidential

 34

implemented, for
instance the
requirement or a
part of it is
incorrect,
undesirable
(requirement is
correct as stated
but it is not
desirable), not
needed,
ambiguous;
requirement is
illogical (usually
because of a
self-contradiction),
unreasonable
(logical and
consistent but
unreasonable with
respect to the
environment
and/or budgetary
and time
constraints),
unachievable
(requirement
fundamentally
impossible or
cannot be
achieved under
existing
constraints),
Inconsistent,
incompatible (with
other
requirements, with
configuration or
with environment)

 -> system does
not correspond to
customer needs
Non-Verifiability
of requirements:
Unverifiable (the
requirement, if
implemented,
cannot be verified
by any means or
within available

Requirements
engineer

Good requirements
engineering, including
verification and validation

Case study in section 6 was removed because it is confidential

 35

time and budget.
For example, it is
possible to design
a test but the
outcome of the test
cannot be verified
as correct or
incorrect.),
Untestable (it is
not possible to
design and/or
execute tests
which will verify
the requirement.
Untestable is
stronger than
unverifiable.),
PRESENTATION
(bugs in the
presentation or
documentation of
requirements. The
requirements are
presumed to be
correct, but the
form in which they
are presented is
not. This can be
important for test
design automation
systems which
demand specific
formats.),
Presentation,
documentation
(format, media,
etc.), presentation
violates standards
for requirements
-> accuracy of
system can not be
verified
Requirement
changes:
requirements,
whether or not
correct, have been
changed
(requirements
changed or
deleted, new

Requirements
engineer

Requirements management,
especially change
management (detection and
documentation of changes,
impact analysis,
communication of changes)

Case study in section 6 was removed because it is confidential

 36

requirements
added) between
the time
programming
started and testing
ended, Domain
changes (input
data domain
modified: e.g.,
boundary changes,
closure,
treatment),
changes to
performance and
other quality
requirements (e.g.,
throughput) and/or
timings. -> system
does not
correspond to
customer needs
Requirements
implemented
wrongly (coding,
typography,
standards
violation), errors
in component,
interfaces or
architecture ->
system does not
correspond to
customer needs

developer Quality management

Sources: [CNYM00], p.168ff; [BV00]
Metrics: relative deviation between system data and exact data; number of ciphers for input
and output as well as for internal calculations

QA: Integrity in terms of Completeness

Threat ->
consequence

Misuser countermeasure

Sabotage or
unintentional
corruption of data
by user error like
input in wrong
field, no input ->
Data loss or

User, administrator Usability of user interface,
training and documentation,
auditing, consistency
checking, confirmation,
cross examination, tracking
assistance, time-efficiency
of use cases, availability of

Case study in section 6 was removed because it is confidential

 37

corruption services, fault tolerance of
user interfaces

Wrong system
usage ->
incorrectness of
input (input into
wrong fields,
wrong input,
missing input,
incorrect saving
of data),
incorrectness of
output (e.g.
invoices sent to
clients), user
dissatisfaction,
user refusal of the
system,
inefficiency of
user tasks (if user
actions must be
repeated or data
corrected), non-
adherence to
processes,
incomplete
accomplishment
of a use case, no
mental model of
system

user, administrator,
maintainer

Usability of the user
interface

Wrong system
usage -> damage
like above

user, administrator,
maintainer who
suffer from too
strict security
policies and
processes

Trade-off between security
and usability requirements

Sabotage or
intentional
corruption of data
or software,
vandalism, fraud
-> destruction;
systematic trying
of passwords,
intentional
effectuation of
abnormal end,
misuse of user
rights, misuse of
administrator
rights, replay of

cyber-terrorist,
corporate raider,
vandal, other
intruder

Definition and enforcement
of security policies; foresee
misuses in requirements
analysis and system design;
Identification,
authentification,
authorization, intrusion
detection and intrusion
response system,
nonrepudiation, privacy/
confidentiality; Immunity,
Integrity, survivability,
physical protection, security
auditing; emergency
definition, emergency plan,

Case study in section 6 was removed because it is confidential

 38

messages, Hoax,
mail bombing,
flooding -> Data
or software loss
or corruption

emergency responsible,
emergency handbook, alarm
plan, restart plan, emergency
practice, substitution
procurement plan,
insurances, PC emergency/
recovery disk, escalation
policy; runtime safety
check, checks on the validity
of input data, watchdog
timers, delay timers,
software filters, software-
imposed initialization
conditions, additional
exception handling,
assertion checking;
authentication enforcement,
auditing, consistency
checking, cross
examination, tracking
assistance, certification,
authorization, justification
enforcement; security in
general

System errors ->
Data loss or
corruption

developer exception handling, resource
assignment, validation,
auditing, consistency
checking, confirmation,
cross examination,
verification, check point,
better information flow;
recoverability

Incompleteness
of requirements:
the requirement
as specified is
either ambiguous,
missing,
incomplete,
duplicated,
overlapped,
overly
generalized (e.g.,
too powerful for
the application),
not downward
compatible,
insufficiently
extendable or
overly specified.

Requirements
engineer

Good requirements
engineering, including
verification and validation

Case study in section 6 was removed because it is confidential

 39

 -> software does
not correspond to
customer needs,
e.g. does not
contain all
necessary data or
support not all
necessary
functionalities
user error & bad
reliability in
terms of maturity
and fault
tolerance -> data
loss

regular user Foresee user errors by
system design, fault
detection, catching
exceptions; formal methods
for design; standard
compliance

heavy usage ->
system
breakdown or
data loss

several regular
users

Foresee heavy usage, load
tests before release;
redundancy, modularisation

Bad
recoverability of
system after
breakdown ->
partial data loss

administrator Recoverability, redundancy

Sources: [CNYM00], p.176ff; [BV00]

QA: privacy/ confidentially

Threat ->
consequence

Misuser countermeasure

Intentional
unauthorized
disclosure =
access to or
espionage of
proprietary
information,
active
wiretapping of
wires, phone calls
and data transfer,
System
penetration;
manipulation of
wires, systematic
trying of
passwords, IP
spoofing, misuse
of routing

An intruder who is
not a regular user,
e.g. professional
criminals, hackers,
crackers, industrial
spies, foreign
governmentals,
foreign military,

Definition and enforcement
of security policies; foresee
misuses in requirements
analysis and system design;
Identification,
authentification,
authorization, intrusion
detection and intrusion
response system, encryption,
security auditing,
nonrepudiation, privacy/
confidentiality; Immunity,
Integrity, survivability,
physical protection, security
auditing; emergency
definition, emergency plan,
emergency responsible,
emergency handbook, alarm
plan, restart plan, emergency

Case study in section 6 was removed because it is confidential

 40

protocol, login
bypass, network
analysis tools,
bugging of
rooms,
mascerading,
analysis of the
message flow,
non-repudiation
of a message,
unauthorized
copying of a data
carrier, DNS
spoofing, web
spoofing,
hijacking of
network
connections ->
Hacker/ spy gets
hold of data,
maybe hands
them on or
publishs them

practice, substitution
procurement plan,
insurances, PC emergency/
recovery disk, escalation
policy; runtime safety
check, checks on the validity
of input data, watchdog
timers, delay timers,
software filters, software-
imposed initialization
conditions, additional
exception handling,
assertion checking

Unauthorized
Access by
Insiders -> loss of
privacy/
confidentiality,
extortion,
trespass

a user who executes
a use case not
intended for
him/her, with
different
motivations:
harmful goal,
disgruntledness, or
by error (just
because it is
possible)

foresee misuses in
requirements analysis and
system design;
Identification,
authentification,
authorization, intrusion
detection, nonrepudiation,
privacy/ confidentiality,
security auditing

Unintentional
disclosure by user
error -> (public)
disclosure of data

User, administrator foresee misuses in
requirements analysis and
system design;
Identification,
authentification,
authorization, intrusion
detection, nonrepudiation,
privacy/ confidentiality,
security auditing, training

Unintentional
disclosure by
software
enhancement ->
(public)
disclosure of data

developer programming rules
(constraints on the
programming process),
developer training

software test with
production data -

administrator Software test with (realistic)
test data; anonymization of

Case study in section 6 was removed because it is confidential

 41

> Developers see
confidential data

real data or systematic
generation of test data

Social
engineering

Hacker/ spy/ other
users

User and administrator
training; four eyes principle
for access to confident data

Sources: [Fir03c], [BSI04], [Ric03], [Ran97]

QA: operational security

subfactors: identification, authentication, authorization, immunity, integrity, intrusion
detection, nonrepudiation, privacy/ confidentiality, security auditing, survivability [Fir03c];
trust

Threat ->
consequence

Misuser countermeasure

probe (access a
target in order to
determine its
characteristics),
scan (access a set
of targets
sequentially in
order to identify
which targets
have a specific
characteristic)

Intruder, often
preparing an attack

Foresee misuses in
requirements analysis and
design; security concepts
and policies, e.g.
authorization concept;
requirements engineering of
security requirements;
security testing; user
training

Neglect of
security aspects
during software
engineering

Developer,
customer

Foresee misuses in
requirements analysis and
design; security concepts
and policies, e.g.
authorization concept;
requirements engineering of
security requirements;
security testing; user
training

careless Internet
usage and
unintentional
installation of
malware, e.g.
trojans,
computer viruses
-> Loss of data,
integrity, privacy,
availability,
resources

users Virus protection concept,
choice and operation of anti-
virus software, notification
of virus infections, regular
update of anti-virus
software, regular virus scan

Uncontrolled but Users User training, authorization

Case study in section 6 was removed because it is confidential

 42

intentional
installation of
software by users
-> side-effects,
security flaws

concept for installations

Hoax leads a user
to detrimental
manipulation of
system

user User training, user warning
about actual hoaxes,
authorization

breakdown of
existing security
devices by error
-> Enabling of
security threats
which were
impossible so far

administrator Redundancy of security
devices or detection of
breakdown plus shutdown of
system

wrong operating
system version,
incorrect system
generation, or
other host
environment
problem

administrator Administrator training,
testing

Sources: [Fir03c], [BSI89], [BSI04], [Ric03], [BV00], [HL98], [Lut93]
Metrics: mean time between break-ins, % break-ins foiled, cost of loss, insurance claims
[SM98]; standard compliance (name of standard, level of compliance), type of auditing
reports, auditing frequency, number of failed intrusion attempts, likelihood of breach, level of
security, likelihood of accident, cost of accident [DPB+04] p.96; level of trust; encryption
algorithm

Further details about computer security flaws can be found in [LBMC94].

QA: Immunity and Survivability

Threat Misuser countermeasure
All attacks from
outside the
system and inside
-> damage: see
“operational
security”

intruder, user,
administrator

All threats are foreseen and
meet a countermeasures
which prevents them

Neglect of
immunity and
survivability
aspects during
software
engineering

Developer,
customer

Foresee misuses in
requirements analysis and
design; requirements
engineering of security
requirements; security
testing

Case study in section 6 was removed because it is confidential

 43

Sources: [Fir03c]

QA: Suitability

Threat ->
consequence

Misuser countermeasure

Software
engineering flaws
-> System
functionalities do
not fit user needs
and processes;
Users do not use
the system, use it
wrong, missing
or incomplete
data

Developer,
requirements
engineer

Constraint on software
development process: good/
formal requirements
engineering and system
design; (acceptance) testing

User does not
understand the
system -> user
can not profit of
all advantages of
the system

user, administrator,
maintainer

Provide documentation and
training, feedback,
metaphors, use rules and
standards like ISO 9241 for
interface design

Processes change
-> System
functionalities do
not fit user needs
and processes any
longer

maintainer Change management;
regular review

changes to the
system + bad
maintainability of
system (badly
analysable/
changeable) code,
bad stability or
testability ->
High
maintenance cost;
system does not
work as before
change

maintainer maintainability compliance,
constraints on the software
development process (e.g.
coding guidelines for
assuring analysability,
changeability, stability and
testability), e.g.
encapsulation/ modularity,
structuredness, reduction of
complexity, tracing, reuse,
separation, indirection,
abstraction, location
transparency, layered
architecture, moduls model
+ view + controller, publish-
subscribe, traceability
matrix, interface consistency

Changes to the
system + system

maintainer conformance to standard,
encapsulation of

Case study in section 6 was removed because it is confidential

 44

not portable or
maintainable ->
loss of
functionality of
the system, i.e.
new
configuration
does not work
any more

functionality, developer
training, independence,
modularity, operating
system functionality

QA: Interoperability

Threat ->
consequence

Misuser countermeasure

Misunderstandings
about semantics of
interface data

Requirements
engineer

Describe context of
application; interface
description must contain
information about
semantics; workshops,
requirements and design
reviews

Interface to other
system is not or
hardly possible to
be developed for
technical reasons
(e.g. no API
included) ->
Interface does not
work

designer Choose another technology
or accept constraints on
system use

bugs in the
interface to third-
party software or
other software
developed
externally (due to
a misunder-
standing or wrong
interpretation of
the features and
operation of the
third-party
software; or due to
flaws in the third-
party software
which the vendor
does not correct) -
> interface does
not work, threat to

Third-party
developer

Interface specification and
testing

Case study in section 6 was removed because it is confidential

 45

time efficiency
and data
correctness/
integrity
System not
compliant to legal
or domain
standards or
conventions about
functionality,
development
process and
documentation

Requirements
engineer, developer

Do research and analysis,
Developer training, coding
standards

Sources: [BV00]; standard interfaces

QA: Reliability in terms of Maturity and Fault tolerance

Threat ->
consequence

Misuser countermeasure

involuntary
creation of
undefined system
state during
normal use ->
Inacceptable
system slowdown
or breakdown or
data loss

regular user Foresee all possible system
states in specification,
catching exceptions; formal
methods for requirements
engineering and design

bad
interoperability
of interface to
other system ->
inreliable
interface, i.e.
threat to time
efficiency and
data correctness

developer developer training,
adherence to interface
standards, tests before
release

Changes to the
system + system
not portable or
maintainable ->
loss of reliability
of the system

maintainer conformance to standard,
encapsulation of
functionality, developer
training, independence,
modularity, operating
system functionality

Sources: [DPB+04], p.40
Metrics: mean time between failures, failure per unit time, degrees of failure (severe,
tolerable, etc.) [SM98], relative uptime, maximum downtime per failure, mean time between
failures, time in operation, number of users, estimated remaining faults, % of faults leading to

Case study in section 6 was removed because it is confidential

 46

failure, number of interface infringements per use case or system task, likelihood of
information loss, critical information, interface state recover, execution state recover, actions
that need to be performed, failure recovery time [DPB+04], p.40

QA: Reliability in terms of Recoverability

Application to exploratory scenario: system breakdown and recoverage by administrator

Threat ->
consequence

Misuser countermeasure

No backup ->
system is not
recoverable after
breakdown

Administrator who
does not know how
to do a backup

training, automated backup
facility, control

No backup ->
system is not
recoverable after
breakdown

Administrator with
unreliable work
style

Four-eyes-principle, control,
automated backup facility

No backup and
backup restorage
foreseen in
system -> system
is not recoverable

Developer or
requirements
engineer

Define use cases “backup”
and “backup restoring“
during requirements
engineering

backup restorage
does not work ->
backup can not
be recovered
when needed

administrator Regular tests of recovery
scenario, sanity check,
redundant backups and
restorage facilities

backup restorage
takes long or is
complicated by
design -> High
effort for system
recovery and long
time of system
non-availability

Developer, designer Modularisation of system
and backup

backup restorage
takes long or is
complicated
because of data
load -> High
effort for system
recovery and long
time of system
non-availability

maintainer archiving of unused data

Sources: [DPB+04], p.50ff
Metrics: fault detection time, fault recovery time, repair time, inspection efficiency,
complexity, coupling, fault density, testing effort [DPB+04], p.50ff

Case study in section 6 was removed because it is confidential

 47

QA: Usability (Understandability, Learnability, Operability)

Subfactors of usability: effectiveness, satisfaction, experience, productivity, safety, error
tolerance, learnability, usability compliance, understandability, attractiveness, operability
[DPB+04] p.75

Threat ->
consequence

Misuser countermeasure

Software
engineering does
not take usability
important ->
users don´t use
system, work
inefficiently, lack
of data integrity

developer constraints on the interface
definition:
understandability,
learnability and operability
of user interface; usability
test

Software
engineering does
not consider
common
standards ->
system does not
comply to user´s
expectations ->
users don´t use
system, work
inefficiently, lack
of data integrity

developer constraints on the interface
definition: use rules and
standards like ISO 9241 for
interface design;
conformance and
conformance review

Sources: [DPB+04] p.75
Metrics: number of user errors, task completion times, task performance, training time
[SM98]; % of goals achieved, % of users successfully completing a task, suggestions for
improving the product, comments on preference of version A versus version B, rating scale
for satisfaction, frequency of disrectionary use, number of negative references, rating of
product, frequency of complaints, user effort/ time, cost of usage, used material, productive
period [DPB+04] p.75

QA: Time Efficiency

Subfactors: response time, throughput [CNYM00], p.220

Threat ->
consequence

Misuser countermeasure

usage of a
component by too
many users or
requests ->
slowdown of

user or user groups,
maintainers and
administrators who
are obliged to do
the same task at the

observation of arrival
patterns; constraints or
loosening of constraints on
system use

Case study in section 6 was removed because it is confidential

 48

communication or
processing

same time, e.g.
produce the same
individual report on
Friday afternoon at
4 pm or to log in by
work or shift start

inappropriate
hardware, network
or software ->
slowdown of
communication or
processing

user or user groups,
maintainer and
administrator

performing load tests before
release; observation of
execution time;
identification and
improvement of bottleneck
components; constraints on
hardware or software;
locality, parallelism, spare
schedule; caching, sharing

denial-of-service
attack, mail
bombing, flooding
-> System too
busy with
attackers request
to operate normal
requests

Intruder like
hacker, cracker,
cyber-terrorist,
criminal

Security measures like
authorization, firewall, etc.

Performance
parasites: any bug
whose primary or
only symptom is a
performance
degradation: e.g.,
the harmless but
needless repetition
of operations,
fetching and
returning more
dynamic resources
than needed ->
decrease of
performance

developer performing load tests before
release; observation of
execution time

Interface to other
system is
inefficient (bad
interoperability)
-> Threat to time
efficiency and
data correctness

developer developer training,
adherence to interface
standards, tests before
release

user error & bad
reliability in terms
of maturity and
fault tolerance ->
Inacceptable
system slowdown

regular user Foresee user errors by
system design, fault
detection, catching
exceptions; formal methods
for design; standard
compliance

Case study in section 6 was removed because it is confidential

 49

or breakdown
heavy usage ->
Inacceptable
system slowdown
or breakdown

several regular
users

Foresee heavy usage, and
load tests before release;
redundancy, modularisation

Changes to the
system + system
not portable or
maintainable ->
loss of efficiency
of the system, i.e.
communication is
slowed down

maintainer conformance to standard,
encapsulation of
functionality, developer
training, independence,
modularity, operating
system functionality

Sources: [DPB+04] p.62, p.68; [BV00]
Metrics: transaction volumes, response times [SM98], boot/ start time, shutdown time
[DPB+04] p.62; duration of a use case

QA: Resource Efficiency

Subfactors: main memory, secondary storage [CNYM00], p.220

Threat ->
consequence

Misuser countermeasure

Heavy load ->
memory
overflow, error
messages to
users, inefficient
work, data loss,
lowered
bandwidth

user or user groups,
maintainers and
administrators who
are obliged to do
the same task at the
same time, e.g.
produce the same
report on Friday
afternoon at 4 pm or
to log in by work or
shift start

observation of arrival
patterns; constraints or
loosening of constraints on
system use

denial-of-service
attack ->
Breakdown of
system

intruder

Security measures like
authorization, firewall, etc.

inadequate
resources like
hardware
(processor,
memory,
secondary
storage), network
or software ->
memory
overflow, error

Developer,
maintainer and
administrator

constraints on workload
distribution, capacity of
memory/ network/
processor/ etc, type and
position of devices, sharing,
locality, early fixing (static
offset determination,
uncompressed format,
indexing), late fixing
(reduce run time

Case study in section 6 was removed because it is confidential

 50

messages to
users, inefficient
work, data loss,
lowered
bandwidth

organization, dynamic offset
determination, compressed
format), execution ordering/
prioritization methods,
layering

Partitions and
overlays:
memory or
virtual memory is
incorrectly
partitioned,
overlay to wrong
area, overlay or
partition conflicts
-> decreased
resource
efficiency

Administrator who
did the partitioning

training

Performance
parasites: any bug
whose primary or
only symptom is
a performance
degradation: e.g.,
Memory leak,
fetching and
returning more
dynamic
resources than
needed ->
decrease of
performance

developer performing load tests before
release; observation of
resource need

Changes to the
system + system
not portable or
maintainable ->
loss of resource
efficiency of the
system

maintainer conformance to standard,
encapsulation of
functionality, developer
training, independence,
modularity, operating
system functionality

Sources: [DKVP03], [DPB+04] p.62, [CNYM00], p.225 and p.237; [BV00]
Metrics: workload distribution, resource consumption (% of usage), cost of memory, number
of network nodes [DPB+04] p.62

QA: Maintainability (Analysability, Changeability, Stability, Testability)

Further subfactor: installability
Application to growth scenario: changes to the system by maintainer

Case study in section 6 was removed because it is confidential

 51

Threat ->
consequence

Misuser countermeasure

maintainability
was no focus
during systems
engineering ->
maintainability is
low and/ or
degrades by time

Developer Specify maintainability
requirements; test
maintenance scenarios; keep
to coding standards

changes to the
system +
maintainer error
(e.g. change
without former
impact analysis;
making an error
during the impact
analysis) -> High
maintenance cost;
system does not
work as before
change

maintainer

Training and documentation,
suitable constraints on the
maintenance process
(instructions demanding that
and how impact analysis has
to be done), tool support

changes to the
system +
insufficient re-
test of
functionalities ->
system does not
work as before
change; threat to
functionality,
reliability and
efficiency of the
system

maintainer automatic test case
generation, testsuite
interface generation

Erroneous
installation ->
Installation must
be re-done, or
later problems in
operation

maintainer Constraints on installation
procedure

bugs in the
documentation
associated with
the code or the
content of
comments
contained in the
code: Incorrect/
wrong,
inconsistent (with
itself or with

Developer Documentation standards
and documentation review

Case study in section 6 was removed because it is confidential

 52

other statements),
incomprehensible
(documentation
cannot be
understood by a
qualified reader),
incomplete
(important facts
are missing),
missing: major
parts of
documentation
are missing ->
more effort for
maintenance,
errors

Interface to other
system is badly
maintainable
because of poor
code or missing/
poor
documentation
(bad
interoperability)
-> High effort for
maintainer, error
proneness

developer Interface documentation,
adherence to standards

Sources: [DPB+04], p.17 and 25; [BV00]
Metrics: time needed to perform task, actions to be performed, number of supported users
(scalability), number of unexpected behaviours (stability), affected components, cohesion,
coupling, size, comment frequency, complexity, depth of inheritance tree, number of children
[DPB+04], p.17 and 25ff

QA: Portability (Adaptability, Installability, Replaceability)

Subfactors: adaptability, installability, replaceability, co-existence, standard compliance,
environment compatibility [DPB+04], p.86
Application to growth scenarios: changes in the environment of the system, e.g. adapt the
system to changes in interfaces, install on other platform (hardware, operating system, etc.;
transfer and configure), replace part of the system by another; all done by administrator

Threat ->
consequence

Misuser countermeasure

Portability was
no focus during
systems
engineering ->

Developer Specify portability
requirements; test portability
scenarios; keep to coding
standards

Case study in section 6 was removed because it is confidential

 53

portability is low
and/ or degrades
by time

Sources: [DPB+04], [DPB+04], p.86
Metrics: number of platforms the system can be ported to, effort and cost required for each
system porting [SM98]; time needed to perform user task, steps to be performed for user task,
removable components, backward compatibility, external communication complexity of
system to be replaced, compliance to standard [DPB+04], p.86

QA: Compliance

Threat ->
consequence

Misuser countermeasure

Compliance was
not designed into
the system during
its development

Developer Specify compliance
requirements; review
compliance; legal or domain
standards or concentions
about functionality,
development process and
documentation

Sources: [DPB+04]
Metrics: name of standard and level of compliance

A.5 Assets with lists of vulnerabilities and countermeasures

Each asset has a number of properties which might be misused and therefore called a
vulnerability. The most extensive list of assets and their vulnerabilities we found at [BSI04].
These vulnerabilities were given for assets on different levels of granularity: some for data
bases in general, some for specific data base programs, etc.. Of course, a specific data base
program shows the same vulnerabilities as all data bases do in general. Therefore it seemed
logic to organize the assets in a hierarchy as shown in figure 7. This hierarchy certainly is not
a complete presentation of all possible assets, but structures the content of [BSI04] and of this
section. Read it like this: under the title “computer networks” we list the vulnerabilities
applying to computer networks in general. Under “mobile devices” we will only name those
specific to mobile devices, but additionally those for computer networks are relevant also. So
you find the vulnerabilities for an asset by taking together all those of the whole branch. It is
the same for the countermeasures.
On the top level, we start with the categories of Firesmith: data, communications, services,
hardware components, personnel [Fir03c].

Case study in section 6 was removed because it is confidential

 54

figure 4: hierarchy of assets as used in this section

For the sake of shortness, we will not name each vulnerability – countermeasure – pair
explicitly. Where for a given vulnerability the corresponding countermeasure is obvious, we
do not name it here. Many countermeasures counteract against several vulnerabilities at a time
and these (and only these) are summed at the end of the list.

Data:

o Are manipulated by users who might fail
o Are manipulated automatically by interfaces to other systems
o are only a model for domain data
o must have a defined format in the system
o data are business values
o change steadily
o information monitoring
o information aggregation
o information storage -> countermeasure: data description
o information transfer
o information collection
o information personalization
o copyright
o unsecured paper file and data carrier transport
o transport of data carrier by postage -> countermeasure: sufficient labelling and safe

packaging of data carriers
o use of mobile data carriers -> countermeasure: appropriate storage of data carrier
o insufficient storage media for emergency
o export or import of data
o transfer of wrong or unwanted data
o unstructured data storage
o data backup
o defect data carriers
o remote access/ remote maintenance via modem

o countermeasures for data vulnerabilities:

o appropriate and controlled disposal of protectable resources
o commitment of employees to backup rules for data and data carrier exchange
o secure deletion of data and disposal of data carriers
o rules for removal of data carriers
o training of personnel with respect to controlled exchange of data carriers
o physical deletion of data carriers before and after use
o virus scan at each data carrier exchange and data transfer

Case study in section 6 was removed because it is confidential

 55

o encryption, checksums and digital signatures for data transfer
o verification of data before transfer
o choice of appropriate postage way for data carriers
o data backup and recovery plan
o data backup on PC
o appropriate storage of backup data carrier
o documentation of backup
o regular backup of server hard disk
o choice of appropriate data formats
o comply to legal regulations for protection of personal data and telephone data

Communications (computer networks):

o configuration of a network
o interfaces to other systems
o might pass over public network
o limited bandwidth
o peer-to-peer connections
o network might break down
o insufficient dimensioning of line
o evaluation of protocol data
o integration of DOS PCs in a server based network
o limitation of the speed of transfer or processing
o uncontrolled communication connections
o inadequate configuration of active network components
o incompatible active and passive network components
o conceptional weaknesses of the network
o exceeding of allowed wire or bus length of ring size
o missing or insufficient strategies for network and system management
o breakdown or interference of network components
o breakdown of system management system
o complexity of configuration
o insecure protocols
o unsecured connections
o treatment of ICMP at security gateway
o erroneous time synchronization
o insufficient identification check of communication partners
o complexity of access possibilities to networked IT systems
o not disconnected connection
o bad or missing authentication
o unprotected wires
o temporarily freely accessible accounts
o ex post modification of information
o elements for network coupling
o internal remote access
o external remote access

o countermeasures for communication/ network vulnerabilities:

o planning and conception

Case study in section 6 was removed because it is confidential

 56

o security policy
o administrator training
o monitoring of existing connections
o documentation of configurations
o control of protocol files
o firewall
o package filter
o choice and operation of filter rules
o security policy for use of peer-to-peer services and control
o analysis of actual state of network
o network concept
o network management concept
o appropriate choice of network protocol
o network management tool
o access restriction to accounts and terminals
o locking or deleting of not required accounts and terminals
o virus scanning of incoming files
o logging of firewall activities
o audit and monitoring of network activities
o restrictive communication via package filter to minimum
o firewall
o encryption
o LDAP Services for NDS
o appropriate choice of network topography
o appropriate choice of wire
o documentation and labeling of wires
o obligatory network password
o locking of server console
o appointment of an additional network administrator
o overview over network services
o local NTP server for time synchronization
o compatibility check of sender and receiver system
o use of one-time passwords
o use of security mechanisms of UUCP
o limitation of peer-to-peer functionalities in server-based network
o choice of appropriate backbone technology
o appropriate physical segmentation
o appropriate logical segmentation
o use of time stamp service
o encrypted communication
o NAT (Network Address Translation)
o deactivation of not required network services
o safe connection of external network via Linux FreeS/WAN
o integration of DNS server with security gateway
o overview over availability requirements
o copy of transmitted data
o emergency plan
o redundancy of network components and communication connections
o regular backup of configuration data of active network components
o authentication

Case study in section 6 was removed because it is confidential

 57

Services:

o authorization
o accessibility of web-services, no strict protection by firewall possible
o processes are defined by domain
o IT security management
o definition of access rights
o administration of access rights
o disclosure of software vulnerabilities
o undocumented functions
o coding faults introduced during software development
o improper software installation
o when a program is used in an environment for which it was not intended
o memory leak
o exception handling
o computers also run malware like viruses or trojans

o countermeasures for service vulnerabilities:

o use of security mechanisms of the application software
o upgrade and update of software and hardware
o one service per server
o redundancy of software
o copy of used software
o prompt installation of patches and updates

Hardware components:

o physical limits, e.g. can break down when getting too hot
o resources (e.g. memory capacity) are limited
o could change place of usage
o dependence on power supply -> countermeasure: emergency power supply supply,

segmentation of power circuits,
o dependence on power distributor
o discharged or out-dated emergency current supply
o data carrier not available at due time
o insufficient labelling of data carriers
o delivery of data carriers
o use of undeclared components
o sharing of directories or printers
o missing or inadequate segmentation
o outsourcing of maintenance
o maintenance down-times

o countermeasures for hardware component vulnerabilities:

o choice of hardware and wires
o appropriate choice of place of usage
o monitoring of components
o physical protection
o emergency off switch

Case study in section 6 was removed because it is confidential

 58

o redundancy
o documentation
o secure relocation
o system management policy
o system management tool
o overview over existing IT systems
o infrastructure maintenance
o permission process for new IT components
o test of new hardware and software
o change management
o secure access for local administration and remote access
o documentation of capacity needs of applications

Personnel:

o no or poor training
o no or poor documentation
o low intelligence
o helpful (facilitates social engineering)
o impatient
o click even on functionalities and buttons they are not to use
o curious
o overworked
o work under time pressure
o unfavourable work conditions
o can be unsatisfied with their employer
o limited personnel resources
o missing or insufficient rules
o insufficient knowledge about rules
o ignorance of IT security rules
o insufficient control of security measures
o inadequate reaction to security incidents
o negligent/ convenient, e.g. storage of passwords
o missing/ improper/ incompatible equipment
o no or insufficient servicing
o insufficient adaptation on changes in IT use
o alternation of users
o inadequate limitation of user environment
o complexity of software configuration
o install software
o cleaning, service and other external personal -> countermeasures: clear

organizational rules for maintenance and repair works
o Handling of passwords
o Easy access to building
o Unclear responsibilities

o Countermeasures against personnel vulnerabilities:

o Training
o Documentation
o Auditing
o guidance by system (e.g. automatization)

Case study in section 6 was removed because it is confidential

 59

o [AER02]: notice/ awareness, choice/ consent, assess/ participation
o clear rules and responsibilities
o separation of roles
o support and helpdesk for IT users
o appointment of an administrator and a deputy
o documentation of changes on system
o information about security and other vulnerabilities of system
o split-up of administrator tasks
o the tidy desk
o reaction to violations of security policy
o standardization of work places
o documentation of approved users and their rights
o definition of roles
o set up of a limited user environment
o process for software acceptance and release
o creation of a requirements document for and choice of standard software
o testing of standard software
o installation instructions and configuration for standard software
o procurement of certified software
o license administration and version control for standard software
o control of delivery
o management reports about IT quality
o documentation of quality securing process
o policy for access control
o change management
o attribution of responsibility for information
o applications and IT components
o controlled initial training/ briefing of new employees
o commitment of employees to observing relevant laws
o instructions and regulations
o rules for deputyship
o controlled process for leaving employees
o contact person for personal problems
o avoiding of disturbance of working atmosphere
o ergonomic work place
o commitment of users to logoff from system after task completion
o software reinstallation on workplace computers
o security check for employees
o screen-lock
o post-processing of incidents
o respect of legal frameworks

Operating system:

o Planning of use
o Installation
o Configuration
o De-installation of operating system
o Migration

o Countermeasures for operating system vulnerabilities:

Case study in section 6 was removed because it is confidential

 60

o user training
o administrator training
o security rules
o security audits
o definition of standards for configuration
o monitoring
o maintenance
o system management
o backup
o recovery mechanisms
o use of security mechanisms of NFS
o use of security mechanisms of NIS
o use of BIOS security mechanisms
o minimum operating system
o deactivation of DNS
o secure BIOS update

Windows NT:

o administration rights on Windows NT system
o sharing of folders
o Migration from Windows NT to Windows 2000
o Integration of DOS computers into Windows NT network
o Configuration of TCP/IP network administration
o Configuration of remote access

o countermeasures for Windows NT vulnerabilities:

o planning of Windows NT network
o definition of security policy for Windows NT Client-Server network
o control of network
o password protection
o structured system management
o user profiles to limit use options
o device protection logging
o securing of boot process
o restrictive allowance of access rights on files and folders
o deactivation of automatic CD ROM recognition
o protection of administrator accounts
o generation of rescue disk

Windows 2000:

o planning of Windows 2000 use
o Configuration of Windows 2000 as domain controller
o Configuration of Windows 2000 as server
o Configuration of Windows 2000 services
o Configuration of Windows 2000 as workstation
o Configuration of secure channel
o Configuration of DDNS
o Configuration of WINS
o Configuration of DHCP

Case study in section 6 was removed because it is confidential

 61

o Usage of CA and Windows 2000 CA structure
o Usage of EFS
o Usage of IPSec
o sharing of files and folders

o countermeasures for Windows 2000 vulnerabilities:

o planning of group guidelines
o password protection
o securing of boot process
o device protection, protection of registration
o deactivation of automatic CD ROM recognition
o generation of rescue disk

Windows 95:

o convertion of file names when storing under Windows 95
o storage of passwords in Windows 95
o sharing of folders
o networked Windows 95 computers

o countermeasures for Windows 95 vulnerabilities:

o setup of user profiles
o system policy for limiting of use
o deactivation of automatic CD ROM recognition
o use of login password
o generation of rescue disk

z/OS:

o character conversion when using z/OS -> countermeasure: user and administrator
information

o login process
o configuration of z/OS operating system
o configuration of z/OS web server
o file protection in z/OS system 81
o system time on z/OS system
o configuration of z/OS security system RACF
o operation of z/OS system functions
o protection of z/OS system configuration against dynamic changes
o control of batch jobs in z/OS -> batch job planning
o RACF attributes
o start process
o security critical z/OS service programs
o unix system services on z/OS systems
o z/OS trace functionalities
o transaction monitors

o Countermeasures for z/OS vulnerabilities:

o use of restrictive user names
o use of the security system RACF
o use of RACF exits
o synchronization of passwords and RACF commands

Case study in section 6 was removed because it is confidential

 62

o use of machine-oriented z/OS terminals
o securing of Linux for zSeries
o definition of system limits of z/OS
o workload management
o license key management
o Parallel-Sysplex on z/OS
o use of VTAM Session Management Exit
o training on Linux and z/VM for zSeries systems

Unix:

o missing authentication possibility between X servers and X clients
o administrator rights
o uucp
o integration of DOS PC into Unix network
o protocols and services

o countermeasures for Unix vulnerabilities:

o split-up of administrative tasks
o obligatory password protection
o restrictive attribute allocation for Unix system files and folders
o restrictive attribute allocation for Unix user files and folders
o secure execution of executable files
o logging
o use of security mechanisms of sendmail, rlogin, rsh and rcp
o secure operation of telnet, ftp, tftp und rexec
o use of secure shell
o one-side connection
o setup of Closed User Group

Novell Netware:

o missing or inadequate activation of Novell Netware security mechanisms
o complexity of NDS -> countermeasure: design of concept
o migration of Novell Netware 3.x to Novell Netware Version 4.x
o "Hacking Novell Netware”
o administrator rights under Novell Netware 3.x

o countermeasures for Novell Netware vulnerabilities:

o secure installation of servers
o appropriate configuration of servers
o secure operation of servers and networks
o revision of servers and networks
o renouncement on activation of remote control
o design of time synchronisation concept
o documentation of Novell Netware Networks
o C2 security under Novell 4.11
o DHCP server under Novell Netware 4.x
o simplified and more secure network management with DNS server under

Novell Netware 4.11

Case study in section 6 was removed because it is confidential

 63

Security Gateway:

o installation and configuration of security gateway
o incident precaution concept for security gateway

o countermeasures for security gateway vulnerabilities:

o concept for/ choice of/ appropriate configuration and operation of security
gateway

o integration of servers in security gateway
o secured placement out of operation or replacement of components of a security

gateway
o outsourcing of security gateway
o high availability of security gateway
o integration of proxy server with security gateway
o integration of Virtual Private Networks with security gateway
o logging of security gateway
o integration of virus scanner with security gateway
o emergency plan for security gateway

Routers and Switches:

o default configuration on routers and switches
o configuration of routers and switches: local basis configuration and network

configuration
o administration of routers and switches
o remote access for management tasks at routers
o routing protocols

o countermeasures for router and switch vulnerabilities:

o appropriate choice of routers and switches
o secure placing out of operation
o configuration checklist
o logging
o protection of switch ports
o setup of access control lists on routers
o data backup and recovery

WWW use:

o out-dated or wrong information on a website
o error at the request for and management of internet domain name
o administration of internet domain
o installation of internet PCs
o eCommerce
o execution of active content possible

o countermeasures for WWW vulnerabilities:

o concept for WWW use
o secure operation of www server
o appropriate internet service provider

Case study in section 6 was removed because it is confidential

 64

o www editorial team
o protection of www files
o security of web browers
o use of stand-alone systems for internet usage
o choice of appropriate modem
o appropriate physical position of modem
o safe administration of modem
o regulation of modem use
o training of users to modem usage
o appropriate modem configuration
o personal firewall for internet PCs
o secure connection of internet PCs
o integration of web server with security gateway
o integration of a web application with web application server and database

server with security gateway
o backup for internet PCs
o emergency plan for web server
o use of S-HTTP
o use of SSL

Novell eDirectory:

o installation of Novell eDirectory
o installation of Novell eDirectory client software
o deficient or insufficient planning of partitioning and replication of Novell eDirectory
o deficient or insufficient planning of LDAP access on Novell eDirectory
o configuration of Novell eDirectory
o configuration of Novell eDirectory client software
o assignment of access rights in Novell eDirectory
o configuration of the intranet client access to Novell eDirectory
o configuration of the LDAP access to Novell eDirectory
o breakdown of Novell eDirectory
o use in intranet
o use in extranet

o countermeasures for Novell eDirectors vulnerabilities:

o training for use of client software
o setup of access rights
o use of LDAP access on Novell eDirectory
o monitoring
o secure communication
o emergency plan for breakdown of Novell eDirectory service
o data backup

Email:

o insufficient time authenticity of e-mail
o disordered email usage
o configuration of email server

Case study in section 6 was removed because it is confidential

 65

o configuration of email client
o feigning of wrong sender
o alias files
o mailing lists
o limited capacity for incoming e-mails
o active content
o address books
o use of web mail
o dial-in numbers/ dialer liable to costs

o countermeasures for email vulnerabilities:

o policy for email usage
o virus and spam filter
o regular deleting of emails
o standardized email addresses
o choice of email provider
o rules for deputyship of email users
o role related email addresses
o secure operation of mail server
o email encryption
o email scanner on mail server
o securing of emails by SPHINX (S/MIME)
o integration of email server in security gateway
o backup and archiving of emails
o use of GnuPG or PGP

Exchange/Outlook 2000:

o migration of Exchange 5.5 to Exchange 2000
o access rights on Exchange 2000 objects
o browser access at Exchange
o connection of other e-mail systems to Exchange/Outlook
o configuration of Exchange 2000 Server
o configuration of Outlook 2000
o installation

o countermeasures for Exchange vulnerabilities:

o administrator training about system architecture and security
o user training about security mechanisms
o secure operation of Exchange/Outlook 2000
o monitoring and logging
o emergency plan for breakdown of server
o use of SSL/TLS
o use of encryption and signatures for communication

Lotus Notes:

o configuration of Louts Notes Server
o configuration of the browser access on Lotus Notes
o active content at access to Lotus Notes
o "Hacking Lotus Notes"

Case study in section 6 was removed because it is confidential

 66

o countermeasures for Lotus Notes vulnerabilities:

o planning of operation
o planning of domains and certificate hierarchy
o planning and configuration of operation in intranet or DMZ with and without

browser access
o training for administrators about system architecture
o user training about security mechanisms
o secure installation
o secure configuration of server
o access restrictions for server
o configuration of access lists on Lotus Notes databases
o configuration of access rights on name and address book
o activation of SSL protected browser access
o configuration of authentication mechanisms for browser access
o configuration of clients
o browser configuration
o handling of notes ID files
o monitoring of system
o encryption of Lotus Notes databases
o creation of new Lotus Notes databases
o encrypted communication
o encrypted email
o encrypted browser access

IIS:

o integration of IIS in system environment
o configuration of operating system for IIS
o configuration of IIS
o insufficient knowledge about vulnerabilities of IIS and test tools
o administrator and user accounts
o known vulnerabilities

o countermeasures for IIS vulnerabilities:

o preparation of installation and secure configuration of Windows NT/ 2000
o secure configuration
o choice and configuration of authentication method for web offers
o protection of critical files
o operation of IIS in separate process
o monitoring, deactivation of not required services
o securing of virtual folders and web applications
o deletion of example files and administration scripts
o deletion of FrontPage Server enhancement
o protection against unauthorized programme calls
o deletion of RDS support
o deletion of not required ODBC drivers
o installation of URL filter
o deletion of network shares
o configuration of TCP/IP filter
o prevention of SYN attacks

Case study in section 6 was removed because it is confidential

 67

o deletion of not trustworthy root certificates
o emergency plan´
o backup

Apache Webserver:

o installation and configuration
o incident precaution concept
o configuration of operating system on Apache web server
o specific vulnerabilities

o countermeasures for Apache vulnerabilities:

o planning of SSL operation
o configuration of operating system
o secure installation
o secure configuration
o configuration of access control
o secure operation
o server enhancement for dynamic web sites
o installation of web server in chroot cage
o use of SSL
o emergency plan and power supply

Mobile devices (computers, telephones, PDAs):

o synchronisation of mobile devices
o user change of mobile computers -> countermeasures: controlled handing over and

withdrawal of mobile devices, software reinstallation at change of user
o dependence on availability of mobile radio network
o insufficient security mechanisms of PDAs
o mobile phones and other mobile devices can be used for bugging
o limited battery capacity
o Calling Line Identification by use of mobile phone
o connection data of usage of mobile phone
o motion profile by use of mobile phone
o photo and video taking with mobile devices
o crash due to maintenance error
o efficiency -> spare resources, light-weight installation
o concurrent applications -> prevent additional installations by user

o countermeasures for mobile device vulnerabilities:

o security policy for use
o adequate keeping of mobile devices in mobile and stationary use
o accumulative keeping of several mobile computers
o theft protection devices
o notice of loss
o locking of mobile phone when lost
o setup of mobile phone pool
o securing of energy supply during mobile operation
o use of security mechanisms of mobile devices (e.g. PIN, encrypted

communication)
o secure data transfer

Case study in section 6 was removed because it is confidential

 68

o emergency plan
o backup
o central administration of PDAs
o password protection
o encryption
o alternative device like terminals

RAS System:

o erroneous administration
o inadequate usage of authentication services at remote access
o maloperation at use of RAS services
o configuration of RAS Client
o inadequate equipment of the working environment of RAS clients
o deactivation of security mechanisms for RAS access
o usage of RAS client as RAS server
o permission of external use of RAS components

o countermeasures for RAS vulnerabilities:

o appropriate choice
o concept for RAS use
o appropriate installation and configuration
o secure operation
o use of authentication server
o secure configuration under Windows 2000
o emergency plan for RAS system

Encrytion:

o key management
o configuration of crypto modules
o operation of crypto modules
o availability of crypto module
o security of cryptographic algorithm
o correctness of encrypted data
o disclosure of cryptographic key
o counterfeited certificates
o interfaces of crypto modules
o physical security of crypto modules
o operating system
o irradiation security
o backup
o Application of crypto modules on different layers of the OSI reference model

o countermeasures for encryption vulnerabilities:

o concept for encryption
o appropriate choice and update of cryptographic method and product
o rules for deployment of encryption

Case study in section 6 was removed because it is confidential

 69

Telephone:

o Crosstalk
o maloperation of answerphone
o data saved in telephone system
o limited capacity of phone answering machine
o simple phone PIN code
o remote enquiry
o remote access for management tasks in telephone system and ISDN coupling elements

-> countermeasures: renouncement or administration of authorization
o manipulation via ISDN-D channel possible
o telephone system interfaces

o countermeasures for telephone vulnerabilities:

o appropriate physical position of telephone system and answerphone
o documentation and helpdesk for users and telephone administrator
o acquisition/ choice of appropriate telephone server & telephone & ISDN cards

& answerphone
o use of secure phone PIN code
o evitation of critical information on answerphone
o regular playback and deleting of stored messages
o limitation of time of speech
o documentation of ISDN card configuration
o aspects of data protection for logging
o deactivation of not required functionalities of ISDN card or ISDN router
o use of existent security mechanisms of ISDN components
o use of D channel filter, information of users about warning messages
o symbols and tones
o information of users about dangers
o user training for telephone and answerphone use
o logging of administrator works on telephone system
o revision of telephone system configuration (comparison of as-is and to-be)
o change of default passwords
o protection of telephone server
o password protection for telephones
o deactivation of not required functionalities
o regular backup of telephone system configuration data
o basis phone number for emergencies and catastrophes
o switching off of answerphone when being present
o authentication via CLIP/COLP (CLIP= Calling Line Identification

Presentation, COLP= Connected Line Identification Presentation)
o Callback based on CLIP/COLP
o emergency plan for breakdown of telephone system

Fax:
o bleaching of some fax papers -> countermeasure: photocopying of incoming faxes
o legal bindingness of fax
o disordered fax usage
o unauthorized use of a fax device

Case study in section 6 was removed because it is confidential

 70

o unauthorized reading of incoming faxes
o analyze of rest information on fax devices
o feigning of a wrong fax sender
o intentional re-programming of target keys of a fax device
o limited capacity for incoming fax messages
o fax server
o overload of fax server
o administration of fax address books and mailing lists

o countermeasures for fax vulnerabilities:

o security policy for fax usage
o appropriate physical position of fax device
o appointment of a fax responsible person
o appointment of authorized fax operators
o appropriate fax devices and fax server
o appropriate disposal of consumable fax material and spare parts
o provision and control of consumable fax material
o turning off fax device off office hours
o setup of a fax post office
o regular controls of security policy
o user information
o blocking of certain fax numbers
o locking of certain sender fax numbers
o deactivation of not required functionalities
o fax device with automatic enveloping of incoming faxes
o use of appropriate fax title page
o use of send and receipt protocols
o telephonic announcement of a fax message
o telephonic verification of correct fax receipt
o telephonic verification of correct fax sender
o control of saved fax addresses and protocols
o activation of callback option
o trader address list for fax re-acquisition
o emergency plan for fax server breakdown

DBMS:

o complexity of DBMS
o missing or inadequate activation of database security mechanisms
o complexity of database access
o inadequate organization of alternation of database users
o administration
o breakdown of data base
o undermining of access control via ODBC
o limits of storage medium
o loss of data base integrity or consistency

o countermeasures for DBMS vulnerabilities:

o appropriate choice of DBMS software
o installation and configuration
o security concept

Case study in section 6 was removed because it is confidential

 71

o prevention of inference
o appropriate choice of physical position
o access control
o split-up of administration tasks
o rules for setup of users and user groups
o control of protocol files
o rules for database enquiries
o secured data export/ import
o structured data management
o blocking and deleting of not required database accounts
o securing of consistent database administration
o monitoring
o restrictive handling of database links
o encryption of data base
o integration of database server with security gateway
o rules of conduct after loss of database integrity
o backup
o archiving
o recovery mechanisms for database
o installation of ODBC drivers

Archive Systems:

o migration
o option of revision
o order criteria
o capacity of data carriers
o documentation of archive access
o transfer of paper data into electronic archives
o refreshing of data content
o refreshing of digital signatures
o execution of revisions
o destruction of data carriers at archiving
o planning of the physical place of archive systems
o use of adequate data carriers for archiving
o legal frameworks when using archive systems
o delayed archive information
o synchronization of index data when archiving

o countermeasures for archive system vulnerabilities:

o market study for archive systems
o appropriate choice of archive system
o data formats and media
o appropriate storage of archive media
o clear goals of archiving
o archive policy
o identification of technical & legal & organizational influence factors
o monitoring of storage resources
o consistent indexing of documents
o superordinated document management

Case study in section 6 was removed because it is confidential

 72

o regular revision of archiving process
o regular usage of archive system
o regular purification of archived data
o regular purification of encrypted data, digital signatures
o regular renewal of technical archive system components
o administrator and user training
o protection of integrity of index databases
o logging of archive access
o regular functionality and recovery tests
o evitation of unsafe data formats
o operation of USB storage media
o regular data backup of system and archive data

Teleworking:

o disposal of data carrier and documents at the work place at home
o missing or insufficient training of teleworkers
o temporal limited availability of teleworkers
o insufficient integration of teleworkers into information flow -> countermeasure:

defined information flow between teleworker and institution
o unauthorized private use of company telework computer
o increased probability of theft at home office
o access by family members or visitors

o countermeasures for teleworking vulnerabilities:

o rules for teleworking
o appropriate setup of home office
o appropriate storage of business document and data carriers
o rules for transport of documents and data carriers between home office and

company
o concept for helpdesk and maintenance of home office
o rules for usage of communication and access possibilities
o security training for teleworkers
o rules of deputyship for teleworkers
o backup strategy and storage of backup data carriers

Outsourcing:

o outsourcing strategy
o contractual regulations
o contractual regulations about the end of outsourcing
o dependence on outsourcing supplier
o spoiling of work atmosphere by outsourcing plans
o technical connection of outsourcing supplier, e.g. usage of insecure protocols in

public networks
o incident precaution concept
o dependence on the systems of an outsourcing service provider
o disclosure of data to third parties by outsourcing provider

Case study in section 6 was removed because it is confidential

 73

o countermeasures for outsourcing vulnerabilities:
o outsourcing strategy
o definition of quality requirements for outsourcing projects
o appropriate choice of outsourcing supplier
o contractual arrangements
o IT security concept
o emergency plan
o secure migration
o planning and maintenance of IT security during outsourcing

Sources: [AER02], [BSI04]

Software engineering process:

o program faults (documented software errors)
o module internal faults (e.g. syntax, inconsistencies, logic faults,

programming fault like program rule violation)
o module interface faults (interactions with other system components, such as

transfer of data or control, data mismatch such as name faults, structural
faults, value faults, procedural faults)

o module functional faults (operating faults: omission or unnecessary
operations; conditional faults: incorrect condition or limit values; behavioral
faults: incorrect behaviour, not conforming to requirements)

o human errors (cause of program faults)
o coding or editing errors
o communication errors within a team (misunderstanding S/W interface

specifications)
o communication errors between teams (misunderstanding H/W interfaces

specifications or other team´s S/W specifications)
o errors in recognizing requirements (misunderstanding specifications or

problem domain)
o errors in deploying requiremenets (misunderstandings, problems

implementing or translating requirements into design)
o process flaws (flaws in control of system complexity + inadequacies in

communication or development methods)
o inadequate code inspection and testing methods
o inadequate interface specifications + inadequate communication (among

S/W developers)
o inadequate interface specifications + inadequate communication (among

H/W developers)
o requirements not identified or understood + incomplete documentation
o requirements not identified or understood + incomplete design
o design principle flaws (flaws related to fundamental principles that designers

or programmers must follow in order to define proper and understandable
interface of functional structures, like inappropriate interface definitions
prone to be misunderstood and misdeveloped (definitions inconsistent and
distributes, complicated correspondence between definitions, insufficient
discrimination between defined items, ambiguous labels defining items)

o design management flaws (flaws related to the methods and procedures
facilitating design management, i.e. how to document and communicate

Case study in section 6 was removed because it is confidential

 74

information on the interfaces and functional structures so that designers and
programmers can utilize them properly and evaluate their correctness)

 lack of methods for recording and referring software interface
definitions (inappropriate communication of module calling
information, inappropriate communication of global variable or file
access information)

 lack of communication methods between software engineers and
hardware engineers (inappropriate communication of hardware
physical configuration, inappropriate communication of hardware
access information)

o countermeasures for software engineering process vulnerabilities:

o focus on the interface between the software and the system in analyzing the
problem domain

o identify safety-critical hazards early in the requirements analysis
o use formal specification techniques in addition to natural-language software

requirements specifications
o promote informal communication among teams
o as requirements evolve, communicate the changes to the development and

test teams
o include requirements for “defensive design”

Source: [Lut93], [NK91]

Further countermeasures which are not specific to any single asset or vulnerability:
Immunity, Integrity, survivability, physical protection, security auditing [Fir03c], virus filter,
access authorization (authentication, access rule validation, identification), auditing, alarm,
encryption, rapid posting, perturbation (noise addition) [CNYM00], p.205f; standard
compliance [DPB+04] p.96; Audit, accountability, controlled Object Reuse, Accuracy,
Reliability of Service, Data Exchange [BSI91]; Identification and Authentication
(authentication by possession, by knowledge, by characteristic features), Administration of
Rights, Verification of Rights, audit, controlled object reuse, error recovery, data
communication security, peer entity authentication, access control, data origin authentication,
non-repudiation, source code inspection [BSI89]; security audit (=audit of security activities;
contains automatic response, data generation, analysis, review, event selection, event storage),
security audit review (= tool assisting in review of audit data), assuring the identity of a party
participating in a data exchange (proof of origin, proof of receipt), cryptographic functionality
(to help satisfy several high-level security objectives; these include (but are not limited to):
identification and authentication, non-repudiation, trusted path, trusted channel and data
separation), access control, information flow control, residual information protection, rollback
(=undo of last operations and return to defined state), stored data integrity, export to outside
control, import from outside control, data authentication, flow control, identification and
authentication (contains: authentication failures, user attribute definition, specification of
secrets, user authentication, user identification, user-subject binding, security management
(security attributes, data and functions, revocation, security attribute expiration, security
management roles), privacy (includes: anonymity, pseudonymity, unlinkability of several uses
of resources, unobservability, abstract machine test, fail secure, physical protection, trusted
recovery, replay detection, reference mediation, domain separation, state synchrony protocol,
time stamps, data replication consistency, self test, detection and notification of attack,
resistance to attack, fault tolerance, priority of service, resource allocation (e.g. quotas, then

Case study in section 6 was removed because it is confidential

 75

no monopolisation of resources possible), limitation on scope of selectable attributes,
limitation on multiple concurrent sessions, session locking, access banners, access history,
session establishment, trusted path/ channels, explicitely stated security requirements,
administrator guidance documents, user guidance, development tools, compliance with
implementation standard [CC99]

References
[ABD02] Aagedal, J.Ö., den Braber, F., Dimitrakos, T., Gran, B.A., Raptis, D., Stölen, K.: Model-based Risk Assessment to

Improve Enterprise Security. Proc. Of the 5th International Enterprise Distributed Object Computing Conference (2002)
51-62

[AER02] Anton, A.I., Earp, J.B., Reese, A.: Analyzing Website Privacy Requirements Using a Privacy Goal Taxonomy,
RE´02 (2002) 23-31

[Ale02] Alexander, I.: Initial Industrial Experience of Misuse Cases. Proc. Of IEEE Joint Internat. Requirements Engineering
Conf. (2002) 61-68 http://easyweb.easynet.co.uk/~iany/consultancy/misuse_cases/misuse_cases_in_tradeoffs.htm

[Ale02a] Alexander, I.: Modelling the Interplay of Conflicting Goals with Use and Misuse Cases. GBPM´02 (2002)
http://www.ibissoft.se/events/gbpm02/FinalVersions/Environment1.pdf

[Ale03] Alexander, I.: Misuse Cases: Use Cases with hostile intent, IEEE Software, Vol. 20 (1) (2003) 58-66
[AK01] Allenby, K., Kelly, T.: Deriving Safety Requirements Using Scenarios. Proceedings of the 5th International

Symposium on Requirements Engineering (2001) 228-235
[Asl95] Aslam, T.: A taxonomy of security faults in the Unix operating system. Master´s thesis, Purdue University (1995)
[BAM01] Buglione L., Abran A., Meli R.: How Functional Size Measurement Supports The Balanced Scorecard
Framework For ICT, FESMA-DASMA (2001) 259-272.
[BBH03] Breu, R., Burger, K., Hafner, M., Jürjens, J., Popp, G., Wimmel, G., Lotz, V.: Key Issues of a Formally Based

Process Model for Security Engineering (2003) http://www4.in.tum.de/~wimmel/papers/BBHJPWL03_ICSSEA.pdf
[BD04] Bruegge, B., Dutoit, A.H.: Object-Oriented Software Engineering - Using UML, Patterns, and Java. Prentice Hall, NJ

(2004)
[BH04] Blakley, B., Heath, C., and members of The Open Group Security Forum: Security Design Patterns,

http://www.opengroup.org/onlinepubs/9299969899/toc.pdf
[Bre05] Breu, R.: Systematischer Entwurf zugriffssicherer Systeme, in: Software-Engineering – Objektorientierte Techniken,

Methoden und Prozesse in der Praxis, Oldenbourg Wissenschaftsverlag, München (2005) 141-170
[BSI89] BSI = Bundesamt für Sicherheit in der Informationstechnik = German Ministery for Security in Information

Technology: IT security criteria (1989) http://www.bsi.bund.de/zertifiz/itkrit/itgruene.pdf
[BSI91] BSI = Bundesamt für Sicherheit in der Informationstechnik = German Ministery for Security in Information

Technology: Information Technology Security Evaluation Criteria, 1991, http://www.bsi.bund.de/zertifiz/itkrit/itsec-
en.pdf

[BSI04] BSI = Bundesamt für Sicherheit in der Informationstechnik = German Ministery for Security in Information
Technology: IT-Grundschutzhandbuch 2004, http://www.bsi.bund.de/gshb/deutsch/g/g01.html

[BV00] Beizer, B.: “Bug Taxonomy and Statistics” Appendix, SOFTWARE TESTING TECHNIQUES, second edition, Van
Nostrand Reinhold, New York, 1990; version as amended by Otto Vinter, see: http://inet.uni2.dk/~vinter/bugtaxst.doc

[CC99] Computer Security Resource Center (CSRC): Common Criteria, Version 2.1, http://csrc.nist.gov/cc/
[CNYM00] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software Engineering. Kluwer

Acadamic Publishers (2000)
[DKVP03] Dörr, J., Kerkow, D., von Knethen, A., Paech, B.: Eliciting Effciency Requirements with Use Cases. REFSQ -

Workshop on Requirements Engineering for Software Quality (2003)
[DVF93] Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-Directed Requirements Acquisition. Science of Computer

Programming, Vol. 20 (1993) 3-50
[DPB+04] Dörr, J., Punter, T., Bayer, J., Kerkow, D., Kolb, R., Koenig, T., Olsson, T., Trendowicz, A.: Quality Models for

Non-functional Requirements. IESE-Report Nr. 010.04/E (2004)
[Egy03] Egyed, A.: A Scenario-Driven Approach to Trace Dependency Analysis. IEEE Transactions on Software

Engineering, Feb 2003, Vol. 29(2), p.116-132
[EG04] Egyed, A., Grünbacher, P.: Identifying Requirements Conflicts and Cooperation: How Quality Attributes and

Automated Traceability Can Help. IEEE Software, Vol. 21 (6), (Nov/Dec 2004) 50-58
[Fir03a] Firesmith, D.G.: Common Concepts Underlying Safety, Security, and Survivability Engineering. Technical Note

CMU/SEI-2003-TN-033 (2003) http://www.sei.cmu.edu/pub/documents/03.reports/pdf/03tn033.pdf
[Fir03b] Firesmith, D. G.: Security use cases. Journal of Object Technology, 2(3) (2003) 53-64

http://www.jot.fm/issues/issue_2003_05/column6.pdf
[Fir03c] Firesmith, D.G.: Analyzing and Specifying Reusable Security Requirements., 11th IEEE International Requirements

Engineering Conference (RE'2003) Requirements for High Assurance Systems (RHAS) Workshop, Monterey, California,
September 2003; http://www.sei.cmu.edu/programs/acquisition-support/publications/firesmith-analyzing.pdf

[FC99] Fowler, M., Scott, K.: UML Distilled. Addison-Wesley, 1999

Case study in section 6 was removed because it is confidential

 76

[Hoc97] Hochmüller, E.: Requirements Classification as a first step to grasp quality requirements. REFSQ´97, Presses
universitaires Namur (1997) 133-144

[HL98] Howard, J.D., Longstaff, T.A.: A Common Language for Computer Security Incidents, SANDIA
REPORT, SAND98-8667, Sandia National Laboratories, 1998
[Iba98] Ibanez M: Balanced IT Scorecard Generic Model Version 1.0. European Software Institute, Technical
Report, ESI-1998-TR-009, May 1998.
[ISO02] ISO: Risk management – Vocabulary – Guidelines for use in standards, ISO Guide 73, International Standards

Organization, Geneva, Switzerland (2002)
[ISO91] International Standard ISO/IEC 9126. Information technology -- Software product evaluation -- Quality

characteristics and guidelines for their use
[ISO92] Standard DIN EN ISO 9241, Ergonomische Anforderungen für Bürotätigkeiten mit Bildschirmgeräten (1992)
[ITU01] ITU – Telecommunication Standardization Sector Draft Specification of the Goal-Oriented Requirements Language

(Z.151), September 2001
[KKB+98] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, S.J.: The Architecture Tradeoff

Analysis Method. Software Engineering Institute, Technical Report CMU/SEI-98-TR-008 (1998)
http://www.sei.cmu.edu/pub/documents/98.reports/pdf/98tr008.pdf

[KKC00] Kazman, R., Klein, M., Clements, P.: ATAM: Method for Architecture Evaluation. CMU/SEI-2000-TR-004,
Software Eng. Inst., Carnegie Mellon University (2000)
http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr004.pdf

[KMT04] Killourhy, K.S., Maxion, R.A., Tan, K.M.C.: A Defense-Centric Taxonomy Based on Attack Manifestations.
International Conference on Dependable Systems & Networks: Florence, Italy (2004) 102-111

[KN92] Kaplan R.S., Norton D.P.: The Balanced Scorecard: Measures That Drive Performance. Harvard
Business Review 70(1) (1992) 71-79.
[LBDJ03] van Lamsweerde, A., Brohez, S., De Landtsheer, R., Janssens, D.: From System Goals to Intruder Anti-Goals:

Attack Generation and Resolution for Security Requirements Engineering.
http://www.cs.toronto.edu/~jm/2507S/Readings/avl-RHAS03.pdf

[LBMC94] Landwehr, C.E., Bull, A.R., McDermott, J.P., Choi, W.S.: A taxonomy of computer program security flaws, with
examples. ACM Computing Surveys, 26(3) (Sept. 1994) 211-254

[Lut93] Lutz, R.R.: Analysing software requirements errors in safety-critical embedded systems. Proceedings of RE’93
(1993)

[LW98] van Lamsweerde, A., Willemet, L.: Inferring Declarative Requirements Specifications from Operational Scenarios.
IEEE Trans. on Software. Engineering, Special Issue on Scenario Management (December 1998) 1089-1114

[LYM03] Liu, L., Yu, E., Mylopoulos, J.: Security and Privacy Requirements Analysis with a Social Setting. Proc. RE´03 -
Intl. Conf. On Requirements Engineering, Monterey, California, September (2003)

[MYBM91] Maclean, A., Young, R.M., Belotti, V.M.E., Moran, T.P.: Questions, Options and Criteria: Elements of design
space analysis. Human Computer Interaction, 6 (3&4) (1991) 201-250

[MDF99] McDermott, J., Fox, C.: Using Abuse Case Models for Security Requirements Analysis. 15th Annual Computer
Security Applications Conference (1999) 55-6

[MEL01] Moore, A.P., Ellison, R.J., Linger, R.C.: Attack Modeling for Information Security and Survivability. Technical
Note CMU/SEI-2001-TN-001 (March 2001)

[MRD05] Meyer, N., Rifaut, A., Dubois, E.: Towards a Risk-Based Security Requirements Engineering Framework. REFSQ
- Proc. Of Internat. Workshop on Requirements Engineering for Software Quality (2005)

[MHN04] Moffett, J. D., Haley, C. B., Nuseibeh, B.: Core Security Requirements Artefacts. Technical Report No 2004/23,
Department of Computing, The Open University, UK (2004) http://computing-reports.open.ac.uk/index.php/2004/200423

[NK91] Nakajo, T., Kume, H.: A Case History Analysis of Software Error Cause-Effect Relationships. IEEE Trans. Software
 Eng. 17 (8) (1991) 830-838
[OMG04] Object Management Group: UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and
 Mechanisms. (2004) http://www.omg.org/docs/ptc/04-09-01.pdf
[PDKV02] Paech, B., Dutoit, A., Kerkow, D., von Knethen, A.: Functional requirements, non-functional requirements and

architecture specification cannot be separated - A position paper. REFSQ - Proc. Of Internat. Workshop on Requirements
Engineering for Software Quality (2002)

[PX02] Pauli, J., Xu, D.: Misuse Case-based Analysis of Secure Software Architecture. (2002)
http://cs.ndsu.edu/~dxu/research/NDSU-CS-TR-04-XU02.pdf

[Ran97] Ranum, M.J.: A taxonomy of Internet attacks. Slide Presentation (1997), available on the Internet at
http://pubweb.nfr.net/~mjr/pubs/pdf/internet-attacks.pdf

[Ric03] Richardson, R.: 2003 CSI/FBI Computer Crime and Security Survey. Computer Security Institute. (2003)
http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2003.pdf

[RW05] Regev, G., Wegmann, A.: “Where do Goals Come from: the Underlying Principles of Goal-Oriented Requirements
Engineering”, Proc. RE05 (13th Int´l Requirements Engineering Conference), La Sorbonne, France, Aug29-Sept2, 2005,
pp.353-362

[SO00] Sindre, G., Opdahl, A.L.: Eliciting Security Requirements by Misuse Cases. Proceedings of TOOLS Pacific 2000
(2000) 120-131

[SO01] Sindre, G., Opdahl, A.L.: Templates for Misuse Case Description. REFSQ - Proc. Of Internat. Workshop on
Requirements Engineering for Software Quality (2001) 125-136

[SM98] Sutcliffe, A., Minocha, S.: Scenario-based Analysis of Non-Functional Requirements. REFSQ - Workshop on
Requirements Engineering for Software Quality (1998) 219-234

[Wie02] Wiegers, K.E.: Success Criteria Breed Success, The Rational Edge, 2(2), 2002

Case study in section 6 was removed because it is confidential

 77

[Xie04] Xie, N., et al.: SQUARE Project: Cost/Benefit Analysis Framework for Information Security Improvement Projects
in Small Companies. Technical Note CMU/SEI-2004-TN-045 (2004)

