

Copyright © [2008] IEEE.
Reprinted from Proceedings of Testing: Academic and Industrial
Conference Practice and Research Techniques, (TAIC PART 2008),
pp. 13-22

This material is posted here with permission of the IEEE. Internal or
personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org
By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

Exploring the relationship of a file�s history and its fault-proneness: An
empirical study

Timea Illes-Seifert, Barbara Paech
Institute for Computer Science, University of Heidelberg

Im Neuenheimer Feld 326, D-69120 Heidelberg
{illes, peach}@informatik.uni-heidelberg.de

Abstract

Knowing which particular characteristics of
software are indicators for defects is very valuable for
testers in order to allocate testing resources
appropriately. In this paper, we present the results of
an empirical study exploring the relationship between
history characteristics of files and their defect count.
We analyzed nine open source java projects across
different versions in order to answer the following
questions: 1) Do past defects correlate with a file�s
current defect count? 2) Do late changes correlate
with a file�s defect count? 3) Is the file's age a good
indicator for its defect count? The results are partly
surprising. Only 4 of 9 programs show moderate
correlation between a file's defects in previous and in
current releases in more than the half of analysed
releases. In contrast to our expectations, the oldest
files represent the most fault-prone files. Additionally,
late changes influence file�s defect count only partly.

1. Introduction

The knowledge about particular characteristics of
software that are indicators for defects is very valuable
for testers because it helps them to focus the testing
effort and to allocate their limited resources
appropriately. Information about the software project
can be collected from versioning control and bug
tracking systems. These systems contain a large
amount of information documenting the evolution of a
software project.

In practice, this information is often not deeply
analysed in order to gain information which facilitates
decisions in the present and permits reliable
predictions for the future. Based on history
characteristics extracted from versioning control
systems, e.g. the number of defects in previous
versions of a file, estimates for the future evolution can

be made. Thus, for example, the expected defects can
be predicted which allows to perform accurate testing
effort estimates. Similarly, knowing defect detection
rates over time of former releases, one can make
predictions on remaining defects at the current point of
time. This facilitates the decision whether the software
can be released or not. Information contained in
versioning control and defect tracking systems can also
be combined. For example, the relationship between
history characteristics (e.g. a file�s age) and software
quality (e.g. measured by the defect count) can be
explored. It is very valuable to know particular history
characteristics of a file indicating its fault proneness
because it helps testers to focus their testing effort on
these specific files [5], [6], [7], [8], [9], [10], [11].

In this paper, we present the results of an empirical
study exploring the relationship between history
characteristics and quality in open source programs.
For this purpose, we analysed 9 open source java
products during their whole lifetime. We use the defect
count of a file as an indicator for its software quality
and relate this measure to history characteristics of that
file. Particularly, we analyse the following questions:
(1) Do past defects influence a file�s current defect
count? (2) Do late changes influence a file�s defect
count? (3) Does the file's age influence its defect
count?

The remainder of this paper is organized as follows.
Section 2 introduces basic definitions and concepts.
Section 3 presents history characteristics analysed in
this study. The design of our study is described in
Section 4. In Section 5, the data collection and analysis
procedures are reported, whereas the Sections 6 to 8
contain the results of our empirical study. In Section 9,
we discuss the threats to validity and in Section 10 an
overview of related work is given. Finally, Section 11
concludes the paper and describes our future work.

Testing: Academic & Industrial Conference - Practice and Research Techniques

978-0-7695-3383-4/08 $25.00 © 2008 IEEE
DOI 10.1109/TAIC.PART.2008.16

13

Testing: Academic & Industrial Conference - Practice and Research Techniques

978-0-7695-3383-4/08 $25.00 © 2008 IEEE
DOI 10.1109/TAIC PART.2008.16

13
-

2. Basic terms and definitions

In this section, basic concepts and terms used in this

paper are introduced.
Versioning Control Systems (VCS) are useful for

recording the history of documents edited by several
developers. In order to edit a file, a developer has to
checkout this file, edit it and commit this file back into
the repository. Each time a developer commits a file, a
message, describing what has been changed, can be
optionally added. CVS1, ClearCase2, SourceSafe3 and
SVN4 are examples for such systems.

History Touch (HT). We define a history touch
(HT) to be one of the commit actions where changes
made by developers are submitted and include
modifying, adding or removing files.

Birth of a file denotes the point of time of its first
occurrence in the VCS, i.e. the date, the file has been
added to the VCS.

Death of a file denotes the point of time of its
removal from the VCS.

Present denotes the point in time where our
empirical study started.

The system age is computed as Present �
Birth of the �oldest� file.

History. The history of a file subsumes all HTs that
occurred to that file from its birth until present or until
its death.

Release denotes a point in time in the history of a
project which denotes that a new or upgraded version
is available. In this study, we considered only final
releases of the open source projects.

In this paper, we use the definition of defects and
failures provided in [1]: A defect is �a flaw in a
component or system that can cause the component or
system to fail to perform its required function. A
defect, if encountered during execution, may cause a
failure of the component or system�. Thus, a failure is
the observable �deviation of the component or system
from its expected delivery, service or result�.

Defect count is the number of defects identified in
a software entity. In this paper, we count the number of
defects of a file. The file a is more fault-prone than
the file b if the defect count of the file a is higher than
the defect count of the file b.

3. History Characteristics

1 http://www.nongnu.org/cvs/
2 http://www-306.ibm.com/software/awdtools/clearcase/
3 http://www.microsoft.com/ssafe/
4 http://subversion.tigris.org/

In this paper, we distinguish three categories of
history characteristics: defect history characteristics,
release history characteristics as well as file age
characteristics and analyse to what extent these
characteristics influence the defect count of a file.

Defect history characteristics subsume all

characteristics of a file concerning previously found
defects.

Release history characteristics subsume all

characteristics of a file concerning the point of time
between two releases when a HT occurs. For a detailed
analysis, we divide the period between two releases in
5 phases.

hotFix: denotes the first 5% of time of the total
period between two releases.

postRelease: this phase follows the hotFix
phase and denotes the next 10% of the total period
between two releases.

preRelease: this phase is followed by the
lastMinuteFix phase and denotes 10% of the total
period before the lastMinuteFix phase.

lastMinuteFix: this phase denotes the last 5% of
time before release.

moderation: this phase denotes the period
between the postRelease and preRelease phase
and makes up 70% of the total period between two
releases.

Figure 1 illustrates the release history
characteristics.

File age characteristics subsume all file

characteristics related to its age. According to its age,
we classify files in one of the following categories5:

Newborn: A file is newborn at its birthday.
Young: < 0.5 * SystemAge AND not

Newborn (all files that are not older than the half of a
system�s age and that are not classified as Newborn)

5 We adopted the classification of class hierarchy histories

presented in [17]

time

Release n Release n+1

5%

ho
tfix

5%
las

t m
inu

te
fix

po
str

ele
as

e

pr
es

ele
as

e
10% 10%

moderation

Figure 1. Release history characteristics

1414

Old: >= 0.5 * SystemAge (all files that are
older than or equal to the half of a system�s age).

4. Study design

In this Section details on the experiment are

described.

4.1. Goal and research questions

The main goal of this empirical study is to analyse
the influence of a file�s history on its defect count.
These are our research hypotheses and their rationale:

H1: The number of defects found in the previous
release of a file correlates with its current defect count.
The rationale behind this hypothesis is that files that
tend to be complex, not well understood and fault-
prone remain not well understood and fault-prone.

H2: Release characteristics of a file correlate with
its defect count. Particularly, the following sub-
hypotheses can be formulated:

H2.1: The defect count of a file increases with the
number of HTs in the hotFix and in the
postRelease phase. The rationale behind this
hypothesis is that changes that occur shortly after a
software release are quickly implemented and
represent not well tested patches which lead to further
defects in the corresponding file.

H2.2: The defect count of a file increases with the
number of HTs in the preRelease and in the
lastMinuteFix phase. The rationale behind this
hypothesis is that last minute changes and features are
not well tested and also increase a file�s defect count.

H3: A file�s age is an indicator for its defect count.
Particularly, the following sub-hypotheses can be
formulated:

H3.1: Newborn and young files are the most fault-
prone files. The rationale behind this hypothesis is that
Newborn and Young files represent new features that
might be not well understood and consequently more
fault-prone than old files.

H3.2: Old files have the lowest defect count. The
rationale behind this hypothesis is that old files
represent stable functionality which matured over
years so that most of the defects have already been
removed.

4.2. Independent Variables

The independent variables� definitions are based on

the history characteristics described in Section 3 and
are summarized in Table 1.

Table 1. Independent variables

ID Description
DPREi Number of defects reported for a file

between release i-1 and release i.
HF Number of HTs performed on a file in the

phase hotFix.
PreR Number of HTs performed on a file in the

phase preRelease.
PostR Number of HTs performed on a file in the

phase postRelease.
LM Number of HTs performed on a file in the

phase lastMinuteFix.
Mod Number of HTs performed on a file in the

phase moderation.
F-N NewBorn file
F-Y Young file
F-O Old file

4.3. Dependent Variable

The dependent variable of our study is the defect
count of a file that occurred between two consecutive
releases during its history. Thus, DCURRi denotes the
number of defects reported for a file after release i and
before release i+1.

We relate a characteristic j in release n of a file to
the defect count reported to that file between release n
and release n+1. Figure 3 illustrates how file
characteristics are related to corresponding defect
densities for particular releases.

4.4. Subject projects

In this study, we analysed 9 open source projects.
We applied the following criteria when selecting the
projects: (1) A bug tracking system is available. (2)
Number of HTs > 50.000. (3) The project is written in
Java. We included OSCache, a project that does not
fulfil the criteria defined above, in order to compare
the results obtained for all other projects with a smaller
but mature project.

time
Release n
Rn

Release n+1
Rn+1

Characteristic j (f)

Release n-1
Rn-1

n

DCURRn (f)
Defects reported after
Rn and before Rn+1

Figure 2. Defect count and characteristics
of a file

1515

Apache Ant (Ant)6 is a Java application for
automating the build process. Apache Formatting
Objects Processor (Apache FOP)7 reads a formatting
object (FO) tree and renders the resulting pages to a
specified output, e.g. PDF. Chemistry Development
Kit (CDK)8 is a Java library for bio- and chemo-
informatics and computational chemistry. Freenet9 is a
distributed anonymous information storage and
retrieval system. Jetspeed210 is an open portal
platform and enterprise information portal. Jmol11 is a
�Java molecular viewer for three-dimensional chemical
structures. OSCache12 is a Java application which
allows performing fine grained dynamic caching of
JSP content, servlet responses or arbitrary objects.
Pentaho13 is a Java based business intelligence
platform. TV-Browser 14 is a Java based TV guide.

Table 2 summarizes the attributes of the analyzed
projects. A * behind the data in the column �Project
since� denotes the date of the registration of the project
in SourceForge15. For the rest, the year of the first
commit in the versioning system is indicated. The
column �OS-Project� contains the name of the project
followed by the project�s latest version for which the
metrics �LOC� (Lines of Code) and the number of files
have been computed. The 3rd and the 4th columns
contain the number of defects registered in the defect
database and the number of HTs extracted from the
VCS.

Table 2. Subject Programs
OS-Project Project since # Defects # HTs LOC # Files

1. Ant (1.7.0) 2000 4804 62763 234253 1550
2. FOP (0.94) 2002* 1478 30772 192792 1020
3. CDK (1.0.1) 2001* 602 55757 227037 1038
4. Freenet (0.7) 1999* 1598 53887 68238 464
5. Jetspeed2 (2.1.2) 2005 630 36235 236254 1410
6. Jmol (11.2) 2001* 421 39981 117732 332
7. Oscache (2.4.1) 2000 2365 1433 19702 113
8. Pentaho (1.6.0) 2005* 856 58673 209540 570
9. TV-Browser (2.6) 2003 190 38431 170981 1868

5. Data collection and analysis

In order to analyse the relationship between defect

count and history characteristics of files, the defect

6 http://ant.apache.org/
7 http://xmlgraphics.apache.org/fop/index.html
8 http://sourceforge.net/projects/cdk/
9 http://freenetproject.org/whatis.html
10 http://portals.apache.org/jetspeed-2/
11 http://jmol.sourceforge.net/
12 http://www.opensymphony.com/oscache/
13 http://sourceforge.net/projects/pentaho/
14 http://www.tvbrowser.org/
15 http://sourceforge.net/

count per file has to be computed. Defect tracking
systems contain information on the defects recorded
during the lifetime of a project, amongst others the
defect ID and additional, detailed information on the
defect. But the defect tracking systems usually do not
give any information on which files are affected by the
defect. Therefore, information contained in VCS has to
be analysed. For this purpose, we extract the
information contained in the VCS into a history table
in a data base. Additionally, we extract the defects of
the corresponding project into a defect table in the
same data base. Then, we use a 3-level algorithm to
determine the defect count per file.

Direct search: First, we search for messages in the
history table containing the defect-IDs contained in the
defect table. Messages containing the defect-ID and a
text pattern, e.g. �fixed� or �removed�, are indicators
for defects that have been removed. In this case, the
number of defects of the corresponding file has to be
increased. Keyword search: In the second step, we
search for keywords, e.g. �defect fixed�, �problem
fixed�, within the messages which have not been
investigated in the step before. We use about 50
keywords. Multi-defects keyword search: In the last
step, we search for keywords which give some hints
that more than one defect has been removed (e.g. �two
defects fixed�). In this case, we increase the number of
defects accordingly. We used SPSS16, version 11.5, for
all statistical analyses.

6. Do past defects influence a file�s current
defect count?

In order to analyse H1, we first computed the
correlation between the defect count of each two
consecutive releases, DPREi and DCURRi. The results are
listed in Table 3. For each open source program, we
computed the Spearman rank-order correlation
coefficient. This coefficient [2] is a measure for the
dependency between two variables, in this case the
dependency between DPREi and DCURRi. The coefficient
can take values between -1 and 1, whereas 0 represents
no linear correlation. The first and second columns
indicate the releases for which the correlation
coefficient between DPREi and DCURRi have been
computed. The third column indicates the Spearman
rank correlation coefficient. For instance, in the open
source project Ant a moderate correlation (0.353,
0.338 respectively 0.334) between DPREi and DCURRi
can be determined for all analysed releases. These
correlations are significant at 0.01 level (**). For the

16 SPSS, http://www.spss.com/

1616

sake of completeness, the last column contains the
Pearson correlation coefficient. The Pearson
correlation coefficient is also a measure of the
association between two variables but it is not as
robust as the Spearman rank correlation coefficient
beacause it assumes a normal distribution and is not
robust in case of atypical values (e.g. outliers) [3].

Only for the project Ant, a significant correlation
with a Spearman coefficient above 0.3 between DPREi
and DCURRi can be determined in all releases. In 3 of
the projects (CDK, Jmol and OSCache), at least the
half of the analysed releases show a significant
correlation with a Spearman coefficient above 0.3
between past and current defects in files. 3 of the
projects, Freenet, Pentaho and TVBrowser show
significant correlations in 25% - 33% of the analysed
releases. For two projects (ApacheFOP and Jetspeed2),
none of the analysed releases show significant
correlations with a Spearman coefficient above 0.3
between DPREi and DCURRi. These results are
summarized in Figure 2.

Based on the results of the correlation analysis, our
research hypothesis H1 cannot be confirmed. The
number of defects found in the previous release of a
file does not influence its current defect count.

100

60 57
50

33
25 25

0 0
0

20

40

60

80

100

120

Ant
CDK

Jm
ol

OSCac
he

Pen
tah

o

Freen
et

TVBrow
se

r

Apa
ch

e F
OP

Je
tsp

ee
d2

Open source project

%
 o

f r
el

ea
se

s
w

ith
 a

 S
pe

ar
m

an
 c

or
r.

co
ef

f
>

0.
3

Figure 2. Correlation results for defect

characteristics

7. Does the release history of a file
influence its defect count?

In order to explore the relationship between the
defect count and release history characteristics of a
file, the Spearman rank-order correlation coefficient
measuring the relationship between the dependent
variable (DCURRi) and the independent variables (HF,
PreR, PostR, LM) was computed. The Spearman rank-
order correlation coefficient measures the extent to
which the number of changes performed on a file
during a phase (e.g. hotFix) correlates with the later

defect count of a file. In this case, it is a measure for
the correlation between DCURRi and HF.

Table 3. Correlation analysis for the influence
of past defect characteristics on the current
defect count. Correlations significant at 0.01 level

(**), and at 0.05 level (*)

Release i-1 Release i Spearman Pearson
1.5.3.1 1.6.0 0.353 ** 0.454 **
1.6.0 1.6.1 0.338 ** 0.461 **
1.6.1 1.7.0 0.334 ** 0.476 **

Release i-1 Release i Spearman Pearson
pre 0.2 0.103 ** 0.12 **
0.2 0.93 0.148 ** 0.25 **
0.93 0.91 0.111 0.012

Release i-1 Release i Spearman Pearson
CDK-2001 CDK-2002 0.473 ** 0.429 **
CDK-2002 CDK-2004 0.349 ** 0.389 **
CDK-2004 CDK-2005 0.3 ** 0.328 **
CDK-2005 CDK-2006 0.063 * 0.216 **
CDK-2006 1.0 0.123 ** 0.179 **

Release i-1 Release i Spearman Pearson
0.4 0.5.0 0.176 ** 0.708 **
0.5.0 0.5.1 -0.017 0.527 **
0.5.1 0.5.2 0.112 0.213 *
0.5.2 0.7 0.605 ** 0.956 **

Release i-1 Release i Spearman Pearson
pre 2.0 0.201 ** 0.187 **
2.0 2.1 0.1 ** 0.115 **

Release i-1 Release i Spearman Pearson
1 2 0.42 ** 0.69 **
2 6 0.178 * 0.068
6 9 0.025 -0.032
9 10.0 0.053 -0.014
10.0 10.2 0.485 ** 0.71 **
10.2 11 0.481 ** 0.837 **
11 11.2 0.512 ** 0.905 **

Release i-1 Release i Spearman Pearson
pre 2.1 0.429 ** 0.214
2.1 2.4 0.202 0.326 *

Release i-1 Release i Spearman Pearson
pre 1.2.0 0.068 ** 0.203 **
1.2.0 1.2.1 0.089 0.092 *
1.2.1 1.2.6 0.218 ** 0.307 **

Release i-1 Release i Spearman Pearson
0.9 1.0 0.225 ** 0.281 **
1.0 2.0 0.184 ** 0.091
2.0 2.2 0.265 ** 0.217 **
2.2 2.6 0.399 ** 0.38 **

Jetspeed2

Jmol

OSCache

Pentaho

Apache FOP

Ant

CDK

Freenet

TVBrowser

Table 4 shows the results of the correlation

analysis. For each phase, the table shows the ID and
name of the analysed program. We computed the
Spearman rank correlation coefficient for each release

1717

of the analysed programs. In the columns �MAX
(Spearman)� and �MIN (Spearman)� the maximum
respectively the minimum computed Spearman
coefficient is indicated. The next two columns indicate
the percentage of releases with a significant correlation
coefficient above 0.3 and the percentage of releases
with a significant correlation (that can be below 0.3).
The last column indicates the percentage of the
analysed projects that do not show any significant
correlation.

Do hotfixes that occur shortly after a program�s
release induce more defects? Looking at the
correlation coefficients for the phases �hotFix� and
�postRelease� we can derive the following
conclusions:

(1) Most of the projects show high correlation
coefficients between the number of changes performed
in the hotFix, respectively in the postRelease
phase and the defect count in at least one release. In
the case of the hotFix phase, 6 of 9 and in the case of
the postRelease phase 8 of 9 programs show a
correlation coefficient above 0.3 at least in one of the
analysed releases. (2) But there is only one single
project that shows a correlations coefficient above 0.3
in all analysed versions (Apache FOP, in the hotFix
phase). 4 of the 9 projects show signigicant
correlations in fewer than half of the analysed releases.
This is true for both, the hotFix and the
postRelease phase. Thus, we have to reject H2.1.

The defect count of a file does not increase with the
number of HTs performed in the hotFix and in the
preRelease phase.

Do late changes that occur shortly before a
program�s release induce more defects? When we
analyse the correlations coefficients for the phases
�preRelease� and �lastMinuteFix� we can derive
the following conclusions:

(3) Most of the projects (8 of 9) show high
correlation coefficients between the number of changes
performed in the preRelease phase in at least one
release. (4) In the case of the lastMinuteFix phase,
only 5 of 9 projects show high correlation coefficients
in at least one release. In case of the pre-release
phase, 2 projects (Freenet and OSCache) show high
correlation coefficients in all analysed releases. 7 of
the 9 projects show signigicant correlations in at least
the half of the analysed releases. (5) In case of the
lastMinuteFix phase, only 2 projects show
significant correlations above 0.3 in more than the half
of the analysed releases.

Based on the conclusions stated before, we can
partly reject the research hypothesis H2.2. The defect
count of a file increases with the number of HTs in the

preRelease phase. This is not true for the
lastMinuteFix phase. Finally, we can conclude,
that release history characteristics have only little
influence on a file�s defect count.

Table 4. Correlation analysis for release
characteristics and defect count

ID OS-Program
MAX
(Spearman)

MIN
(Spearman)

% releases
with
significant
corr. Above
0.3

% releases with
significant corr.

% releases
without
significant corr.

1 Ant 0.572 * 0.021 25 25 75
2 Apache-FOP 0.458 ** 0.335 * 100 100 0
3 CDK 0.284 ** 0.098 0 40 60
4 Freenet 0.457 ** 0.248 60 60 40
5 Jetspeed2 0.181 ** 0.106 ** 0 67 33
6 Jmol 0.707 ** 0.016 50 50 50
7 Oscache 0.091 0.091 0 0 100
8 Pentaho 0.696 ** 0.001 50 50 50
9 TV-Browser 0.584 ** -0.087 80 60 40

ID OS-Program
MAX
(Spearman)

MIN
(Spearman)

% releases
with
significant
corr. Above
0.3

% releases with
significant corr.

% releases
without
significant corr.

1 Ant 0.259 * 0.051 0 25 75
2 Apache-FOP 0.501 ** 0.045 67 67 33
3 CDK 0.571 ** 0.032 20 40 60
4 Freenet 0.588 ** 0.396 ** 60 60 40
5 Jetspeed2 0.366 ** 0.065 33 33 67
6 Jmol 0.646 ** 0.093 25 63 38
7 Oscache 0.494 ** 0.033 67 33 67
8 Pentaho 0.781 ** 0.188 ** 50 100 0
9 TV-Browser 0.648 ** -0.026 40 40 60

ID OS-Program
MAX
(Spearman)

MIN
(Spearman)

% releases
with
significant
corr. Above
0.3

% releases with
significant corr.

% releases
without
significant corr.

1 Ant 0.455 ** 0.277 * 75 100 0
2 Apache-FOP 0.405 ** 0.097 67 67 33
3 CDK 0.629 ** 0.004 20 40 60
4 Freenet 0.552 ** 0.322 ** 100 100 0
5 Jetspeed2 0.249 * 0.153 * 0 67 33
6 Jmol 0.659 ** 0.087 50 75 25
7 Oscache 0.943 0.378 100 0 100
8 Pentaho 0.531 ** -0.121 50 50 50
9 TV-Browser 0.384 ** 0.292 ** 80 100 0

ID OS-Program
MAX
(Spearman)

MIN
(Spearman)

% releases
with
significant
corr. Above
0.3

% releases with
significant corr.

% releases
without
significant corr.

1 Ant 0.293 ** -0.017 0 50 50
2 Apache-FOP 0.132 0.074 0 0 100
3 CDK 0.425 ** 0.069 20 40 60
4 Freenet 0.679 ** -0.003 60 60 40
5 Jetspeed2 0.27 ** 0.118 * 0 67 33
6 Jmol 0.596 ** -0.074 25 38 63
7 Oscache 0.559 0.559 33 0 100
8 Pentaho 0.361 ** -0.274 ** 50 75 25
9 TV-Browser 0.618 ** -0.026 60 40 60

Hotfix

Postrelease

Prerelease

LastMinuteFix

8. Does the file�s age influence its defect
count?

In order to analyse the relationship between a file�s
age and its defect count, we grouped the data into three
categories: Newborn, Young and Old files and
analysed visually the defect densities in each of these

1818

categories: Have Newborn and Young files on average
a higher defect count than Old files? Figure 3 shows
for the program �Ant� the mean defect count in each
category: Newborn (F-N), Young (F-Y), Old (F-O).
The mean defect count is the arithmetic mean,
computed as the sum of the defect counts of the files in
each group (Newborn, Young and Old) divided by the
number of files in each group.

Ant

0.993
0.842

0.612

0.000

0.200

0.400

0.600

0.800

1.000

1.200

F-N F-Y F-O

File age

M
ea

n
de

fe
ct

 c
ou

nt

Figure 3. Mean defect count vs. file age for ANT

The mean defect count for Newborn files is 0.612,
for Young files 0.842 and for Old files 0.993. The
difference of the mean defect count in the categories
Newborn, Young and Old is in all analysed programs
statistically significant at any chosen significance
level.17 In nearly all projects (7 of 9) the mean defect
count for Old files is the highest and that for Newborn
files the lowest. In 2 of 9 projects, the Young files
have the highes defect count.

Because these results were surprising, we
performed a more detailed analysis. For this purpose,
we refined our categories and analysed to what extent
the defect count of a file depends on its age AND on
its stability. Stable files subsume all files that have
been changed below average; unstable files have been
changed above average. Thus, we analyse, for
example, to what extent Old files, that have been
frequently changed (these are Old + unstable files) are
more fault prone than Old files that have not been

17To obtain statistical evidence, we performed the Kruskal-Wallis [2]
non-parametric test. A non-parametric test does not make any
assumptions concerning the distribution of parameters (in contrast to
parametric tests). Differences between several populations can be
analyzed with the help of the Kruskal-Wallis test (in our case,
differences between Newborn, Young and Old Files). The null
hypothesis is that the defect count is the same in both groups; the
alternative hypothesis is that it is not. Based on this test, it can be
concluded that there is strong evidence from the data that Newborn
files have fewer defects than Young files that have fewer defects
than Old files.

frequently changed (Old + stable files). The refined
categories are the following ones: N-unst (all
Newborn and unstable files), Y-unst (all Young and
unstable files), O-unst (all Old and unstable files), N-
stab (all Newborn and stable files), Y-stab (all
Young and stable files), O-stab (all Old and stable
files).

We performed again a visual analysis which related
the mean defect count to each of the refined categories.
The x-axis contains the refined category: On the y-
axis, the mean defect count in each of these categories
is indicated. For example, for the project Ant (Figure
4), the mean defect count of Young and unstable files
(Y-unst) is 1.745. The highest defect count have
Newborn and unstable files (defect count is 1.808).
Stable files have on average lower defect counts than
unstable files.

ANT

0.1850.2430.115

1.6611.7451.808

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N-unst Y-unst O-unst N-stab Y-stab O-stab

File age

M
ea

n
de

fe
ct

 c
ou

nt

Figure 4. Mean defect count vs. file age and

stability for ANT

Figure 5 shows the visual analysis for all projects. For
6 of 9 projects (CDK, Freenet, Jmol, Oscache,
Pentaho, TVBrowser), the highest defect count is
found in files that are Old and frequently changed. In
three projects (Ant, Jetspeed2 and Pentaho), the defect
count for unstable files does not differ very much in
any of the Newborn, Young and Old files. In only one
single case (Apache-FOP), Newborn and Young files
that are unstable show a significantly higher defect
count than Old unstable files. In nearly all projects
(except Pentaho), Newborn stable files have the lowest
defect count. In 6 of 9 projects, Newborn unstable files
are less error-prone than unstable Young and Old files.
Independent of the file age, stable files are less error-
prone than unstable files.

We can conclude that in 6 of the 9 projects the file�s
age influences its defect count. In the other cases, the
stability of a file is a better indicator for a file�s defect
count. In this case the following holds: the more
changes have been performed on a file, the higher is its
defect count.

1919

Apache-FOP

3.543
3.800

2.097

0.805 0.838 0.958

0.0

0.5

1.0

1.5

2.0
2.5

3.0
3.5

4.0

N-unst Y-unst O-unst N-stab Y-stab O-stab

File age

M
ea

n
de

fe
ct

 c
ou

nt
CDK

0.873
1.034

1.727

0.156 0.315
0.177

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N-unst Y-unst O-unst N-stab Y-stab O-stab

File age

M
ea

n
de

fe
ct

 c
ou

nt

Jetspeed2

0.989
0.742

0.452

1.9331.9441.860

0.0

0.5

1.0

1.5

2.0

2.5

N-unst Y-unst O-unst N-stab Y-stab O-stab

File age

M
ea

n
de

fe
ct

 c
ou

nt

Jmol

0.3000.3990.280

4.200

2.357

1.286

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

N-unst Y-unst O-unst N-stab Y-stab O-stab

File age

M
ea

n
de

fe
ct

 c
ou

nt

OSCache

0.3380.311
0.069

1.500

1.1911.136

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N-unst Y-unst O-unst N-stab Y-stab O-stab

File age

M
ea

n
de

fe
ct

 c
ou

nt

Pentaho

0.7020.594
0.792

4.1383.8454.095

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

N-unst Y-unst O-unst N-stab Y-stab O-stab

File age

M
ea

n
de

fe
ct

 c
ou

nt

TVBrowser

0.261
0.150

0.012

1.019

0.6080.556

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N-unst Y-unst O-unst N-stab Y-stab O-stab

File age

M
ea

n
de

fe
ct

 c
ou

nt

Figure 5. Mean defect count vs. file age and stability

Freenet

1.1631.3850.756

15.838

10.063

7.336

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0

N-unst Y-unst O-unst N-stab Y-stab O-stab

File age

M
ea

n
de

fe
ct

 c
ou

nt

2020

Our research hypothesis H3 can be largely
confirmed. In addition, we must reject the research
hypotheses H3.1 and H3.2. Newborn and Young files
are not the most fault-prone files. Based on our
analyses, Old and unstable files are the most error-
prone files.

9. Threats to validity

Internal validity is concerned with the degree to
which conclusions about the causal effect of the
independent variables on the dependent variable can be
drawn [2]. One threat to validity is that not all
developers deliver meaningful messages when they
check-in files. Developers, for example, can also check
in files without specifying any reason, even though
they had corrected a defect. Thus, the defect count of a
file can be higher than the defect count computed by
our algorithm. This concern is alleviated by the size of
the analysed OSPs.

External validity is concerned with the degree to
which results can be generalized [2]. This issue is
alleviated by the number and diversity of the analysed
OSPs. The more OSP programs show the same
characteristics, the higher the probability that other
OSP programs would also show these characteristics.
Additionally, we choose programs from different
application domains in order to increase the
representativeness of the study results. However,
history characteristics of OSP programs and of
commercially produced software may differ from each
other. Furthermore, analyses of additional programs
that are intended in our future work would increase the
external validity.

10. Related work

To our knowledge, this is the first study that
analyses the influence of a file�s history on its defect
count deeply.

There are several other studies that focus on
predicting the defect count of a software entity by
combining product metrics and history metrics ([4],
[5], [6], [7], [8], [9], [10], [11]). One of the main
features that distinguishes our study from these studies
is its magnitude. While most of the studies considered
only one program, we have analysed 9 open source
projects. Additionally, in contrast to our study, the aim
of these studies is defect prediction. Our main goal is
to analyse to what extend history characteristics
influence software�s defect count without selecting the
best prediction model. Another difference to these

studies, except of the study reported in [9], is that all
other studies analyse commercial software.

In [4], [6], [7], [8], [10], and [11] age is used as
independent variable but the definitions used in these
studies differ from our classification. For example in
[10] and [11] only two file categories are defined:
�new� and �pre-existing in a previous release�. In [7],
the age of a file is measured by the number of previous
releases in which that file appeared, whereas in [8]the
age is measured in months. All these studies confirm
our hypothesis that age is an indicator for a file�s
defect count. But in contrast to our study, they report
contrary results. Independent of the measures used for
a software entity�s age, the studies report that the
younger a file the higher its defect count. One cause
for such different results can be that that the
architecture in open source projects is not as stable as
in commercial development. Old files are and must be
(as a result of bad design) frequently changed and
these changes induce more defects.

Previous defects are considered in the studies [4],
[5], [6], [7], [8], [9], [10], and [11]. In [4], [6] and [11]
all defects (that occurred in all previous releases) are
considered. In [3], [9] and [10], pre-release defects are
analysed. In [7] and [8], the number of defects
identified in the prior release are considered. The
results are contradictory. The results in [4], [8], [9] and
[10] confirm our results that previous defects influence
the current defect count only partly. The other studies
lead to contrary results. We can conclude that the
number of past defects may be an indicator for the
number of current defects but there are other more
reliable indicators.

To our knowledge, the relationship between release
history characteristics and defect count has not been
analysed empirically yet.

A huge amount of research papers analyse the
influence of other metrics of a software entity and its
defect count, amongst others in [12], [13], [14], [15]
and in [16].

11. Conclusion and future work

In this paper, we investigated the correlation
between a file�s history and its defect count. Contrary
to our expectation, the defect count of a previous
release of a file does not influence its current defect
count in most of the analysed projects. Additionally,
the defect count does not increase with the number of
changes (HTs) performed shortly after release.
Stronger statistical evidence can be derived for the
relationship between the number of changes performed
shortly before a file�s release and its defect count. The

2121

defect count of a file increases with the number of HTs
performed in the period between 85 � 95 % of the time
before release. Very late changes (in the last 5% of the
time before release) do not correlate with a file�s defect
count.

A file�s age is a good indicator for its defect count.
In almost all cases, the mean defect count differs
significantly depending on a file�s category (newborn,
young and old). In other cases, a file�s stability is a
better indicator for the defect count. The stability of a
file classifies a file according to the number of changes
(HTs) performed on that file. Files that have been
changed below average are less fault-prone than files
that have been changed above average.

The most fault-prone files are old files that have
been changed above average. One reason is that
unstable old files are indicators for bad design. Every
time a change occurs, old files are also affected, which
causes defects in each release. Additionally, in nearly
all projects, the youngest files � the newborn files �
have the lowest defect count.

This knowledge is useful for different roles in the
development process. Testers can focus their testing
activities on particularly fault-prone files, e.g. on old
unstable files. Quality engineers can monitor
development activities and initiate reviews for often
changed old files in order to prevent a high defect
count. Additionally, old files changed too often and
causing high defect densities can be indicators for bad
design. Thus, maintainers can identify candidates for
refactorings.

Our future work will focus on analysing other
measures for a file�s age and its previous defects, as
reported in related work, in order to get more precise
comparison between our results and the results
reported in literature. Additionally, we will focus on
analysing to what extent history characteristics
combined with code characteristics, e.g. code
complexity metrics, can be considered as good
indicators for a file�s defect count. We expect that
history characteristics improve the quality of the
indicators that are based on code characteristics only.
For example, we expect that old, often changed and
complex files are more fault-prone than old and
complex files that have not been changed frequently.

12. References

[1] International Software Testing Qualifications Board.
ISTQB Standard Glossary of Terms used in Software Testing
V1.1, 2005.
[2] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B.
Regnell, and A. Wesslén, Experimentation in Software

Engineering: an Introduction. Kluwer Academic Publishers,
2000.
[3] N. E. Fenton and S. L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach: Brooks/Cole, 1998.
[4] Graves, T. L., Karr, A. F., Marron, J. S., and Siy, H.
2000. Predicting fault incidence using software change
history. IEEE Transactions on Software Engineering, vol. 26.
[5] Arisholm, E. and Briand, L. C. 2006. Predicting fault-
prone components in a java legacy system. In Proceedings of
the 2006 ACM/IEEE international Symposium on Empirical
Software Engineering (Rio de Janeiro, Brazil, September 21
- 22, 2006). ISESE '06. ACM, New York, NY, 8-17.
[6] Khoshgoftaar, T. M., Allen, E. B., Halstead, R., Trio, G.
P., and Flass, R. M. 1998. Using Process History to Predict
Software Quality. Computer 31, 4 (Apr. 1998), 66-72.
[7] Ostrand, T. J., Weyuker, E. J., and Bell, R. M. 2005.
Predicting the location and number of faults in large software
systems. IEEE Trans. Software Eng., vol. 31, pp. 340-355.
[8] Bell, R. M., Ostrand, T. J., and Weyuker, E. J. 2006.
Looking for bugs in all the right places. 2006. In Proceedings
of the 2006 international Symposium on Software Testing
and Analysis (Portland, Maine, USA, July 17 - 20, 2006).
ISSTA '06. ACM, New York, NY, 61-72
[9] Schröter, A., Zimmermann,T. Premraj, R., and ,
R.,Zeller, A. If Your Bug Database Could Talk. Proceedings
of the 5th International Symposium on Empirical Software
Engineering, Volume II: Short Papers and Posters, pp. 18-20,
2006.
[10] Ostrand, T. J. and Weyuker, E. J. 2002. The distribution
of faults in a large industrial software system. In Proceedings
of the 2002 ACM SIGSOFT international Symposium on
Software Testing and Analysis (Roma, Italy, July 22 - 24,
2002). ISSTA '02. ACM, New York, NY, 55-64.
[11] M. Pighin, A. Marzona, An Empirical Analysis of Fault
Persistence Through Software Releases, International
Symposium on Empirical Software Engineering, 2003.
[12] Denaro, G and Pezzè, M. 2002. An empirical evaluation
of fault-proneness models. In Proceedings of the
International Conference on Software Engineering (ICSE
2002), Orlando, Florida, USA, pp. 241-251.
[13] Basili, V. R., Briand, L. C., and Melo, W. L. 1996. A
validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software Engineering vol.
22, pp. 751-761.
[14] Denaro, G., Morasca, S. and Pezzè, M. 2002. Deriving
models of software fault-proneness. In Proceedings of the
14th International Conference on Software Engineering and
Knowledge Engineering Ischia, Italy, pp. 361 - 368.
[15] Nagappan, N., Ball, T., and Zeller, A. 2006. Mining
metrics to predict component failures. In Proceedings of the
International Conference on Software Engineering (ICSE
2006), Shanghai, China.
[16] Gyimothy, T., Ferenc, R., and Siket, I. 2005. Empirical
Validation of Object-Oriented Metrics on Open Source
Software for Fault Prediction. IEEE Trans. Softw. Eng. 31,
10 (Oct. 2005), 897-910.
[17] Girba, T. Lanza, M. Ducasse, S., Characterizing the
Evolution of Class, Software Maintenance and
Reengineering, 2005. CSMR 2005. Ninth European
Conference on Hierarchies, 21-23 March 2005, pp 2- 11.

2222

	IEEE_2013_Copyright
	04670296

