

 The Testing Process –
 A Decision-Based Approach

Technical Report SWEHD-TR-2007-01

Lars Borner, Universität Heidelberg, Arbeitsgruppe Software Systeme
 Timea Illes-Seifert, Universität Heidelberg, Arbeitsgruppe Software Systeme
 Barbara Paech, Universität Heidelberg, Arbeitsgruppe Software Systeme

Version 1.0
September, 2007

Eine Publikation der
Arbeitsgruppe Software

Engineering

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

Historie

Version Datum Grund der Änderung
V.1.0 September 2007 Ersterstellung

Die Arbeitsgruppe „Software Engineering“ ist Teil
des Instituts für Informatik der

Ruprecht-Karls-Universität Heidelberg.
Sie wird geleitet von

Prof. Dr. Barbara Paech

Institut für Informatik
Neuenheimer Feld 348

69120 Heidelberg
paech@informatik.uni-heidelberg.de

http://www-swe.informatik.uni-heidelberg.de/

2 L. Borner, T. Illes-Seifert, B. Paech

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

The Testing Process - A Decision-Based Approach

Lars Borner, Timea Illes-Seifert, Barbara Paech
Universität Heidelberg, Im Neuenheimer Feld 326, 69120

{borner, illes, paech}@informatik.uni-heidelberg.de

Abstract
Considering that testing a software system completely is not possible, the

main task of a test team is to decide which parts of a system should be tested in
which way. The numerous decisions are usually made implicitly during the
testing process. However, awareness of these decisions increases their quality,
by forcing the decision-makers to search for alternatives and to trade off
between them. In this technical report we propose a decision hierarchy for the
testing process. This hierarchy comprises the decisions made during testing and
reflects dependencies among them. These decisions can be assigned to several
decision levels as well as to different roles involved in the testing process,
resulting in a decision hierarchy. The decision hierarchy and the identified
decisions can be applyied in different contexts. In this report, we additionally
present the results of four case studies to which we applied this decision
hierarchy.

1 Introduction

Today’s software systems consist of numerous software components; they realize
countless requirements and are developed in an industrial environment limited by high
time and resource constraints. In order to assess to which extent a software system or its
parts fulfill the requirements, testing activities have to be performed. Since complete
testing is impossible [16], testers are forced to make decisions, i.e. to decide which parts
of the software system have to be tested in which way. Usually, these decisions are
made implicitly by the corresponding roles and often, the responsible persons are not
aware of the decisions they made. However, the awareness of decisions can
significantly improve their quality as it restricts the infinite possibilities to test a system
to a finite set of test cases. Making a decision consciously forces the person who has to
take this decision to search for alternatives, to establish selection criteria and to trade
off between advantages and disadvantages of several alternatives. Consequently, the
awareness of decisions leads to better decisions compared to implicit or ad hoc
decisions and increases the quality of the testing process.

In this paper, we define a decision as follows: A decision denotes a choice
consciously or unconsciously made by a person or a group of persons. A decision made
consciously evolves in the process of discussing possible alternatives and considering
existing success criteria. During the software development process as well as during the

The Testing Process - A Decision-Based Approach 3

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

testing process, several decisions have to be made. The best alternative has to be
selected from e.g. alternative GUI designs, architectural patterns or testing techniques.

In this technical report we identify these decisions and the corresponding roles of
the testing process. Moreover, we assign each decision to one of seven decision levels
which lead to a decision hierarchy. This decision hierarchy can be used for different
purposes, e.g. as a framework to categorize existing testing approaches or as a
framework to analyze actual testing processes in an organization and to derive process
improvements. Furthermore, the decisions of the decision hierarchy can be applied as a
checklist to plan testing activities.

In our research work we applied the decision hierarchy in four case studies. We
specialized the hierarchy to identify specific decisions to be made during the system and
integration testing process to highlight the differences and commonalities of both
processes. Furthermore, we applied the hierarchy to analyze different testing processes
in the industry in order to uncover strengths and weaknesses of the executed processes
and to develop possible improvements. Within another research context the hierarchy
was applied to classify different testing techniques in order to identify the supported
decisions of the considered techniques. Finally the hierarchy served as the basis of a
questionnaire for a test tool evaluation.

The remainder of this report is organized as follows. Section 2 gives an overview of
related work and Section 3 describes the generic decision hierarchy for the testing
process, containing decision levels, corresponding decisions and roles. Section 4
presents results of four case studies, to which we applied this decision hierarchy and
Section 5 gives a short summary and discusses the results of our approach.

2 Related Work

A process model, which describes the main phases of the testing process, consisting
of test planning, test design, test execution and test evaluation activities has been
proposed in [22] by Spillner, Linz and Schäfer. In comparison to our approach, which
explicitly focuses on all decisions to be made during the testing process, the process
model described in [22] is very generic and does not take into account the decisions
involved. The IEEE standard for software test documentation [10] specifies all artifacts
to be created during the testing process, e.g. test plan, test design specification, test case
specification. The decisions made in the testing process are not part of the standard.
Another group of related work comprises test process improvement models like TPI
(Test Process Improvement) [15] or test maturity assessment models, e.g. TMM (Testing
Maturity Model) [5]. The focus of these models is not the test process itself, but the steps
for its improvement, respectively the criteria to assess the maturity of the organizational
testing process.

A conceptual framework categorizing different decisions made during requirements
engineering has been presented in [19] by Paech et al. and in [2] by Aurum et al., but
these approaches do not consider decisions to be made during other phases of the
software engineering process. Furthermore, the system Sysiphus, supporting the
documentation of decisions defined in [19], has been realized in [24]. Additionally,
several approaches for the documentation of the decisions made during the software
development process have been proposed in [9]. To the best of our knowledge there is

4 L. Borner, T. Illes-Seifert, B. Paech

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

no existing research and there are no case studies which particularly address the
decision making process in quality assurance activities.

3 Decision Hierarchy

In our research work we identified the decisions to be made during the testing process
and assigned them to decision levels. At first, we identified the tasks and roles by
analyzing test process descriptions mentioned in standard textbooks such as Spillner
[22] and Mosley and Posey [17]. Our work is mainly based on the fundamental test
process described in [22] consisting of test planning and specification, test execution,
capturing and analysing test results. In a next step, we identified decisions to be made
while performing testing tasks and grouped them into seven decision levels. The result
is the generic decision hierarchy illustrated in Figure 1.

Test goal level

Test design level

Test realization level

Test
Focus

Test
Intensity

Test Design
Technique

Test End
Criteria

Ideal
Test Order

Logical
Test Case

Logical
Test Data

Logical Test
Environment

Concrete
Test Case

Concrete
Test Data

Concrete Test
Environment

Test Run
Evaluation

Concrete
Test Order

Test run level

Test strategy level
Coverage
Criteria

Test Cycle
EvaluationTest evaluation level

Logical
Test Order

Test
BasisSpecification level

Test
Model

Process oriented decisions System oriented decisions

Figure 1. Decision levels and corresponding decisions of the testing process

The principles behind the decision hierarchy can be defined by the following rules:
R1 Decision dependencies: Decisions at lower levels depend on decisions made at
earlier levels. If decisions at top levels are left out, they are implicitly contained in
decisions made at lower levels. Leaving out a decision decreases the quality of this
particular decision, as well as the quality of all dependent ones. The goal of making
decisions in the proposed order is to facilitate the decision making process.

R2 Parallelism: All decisions on the same level can be done in parallel, i.e. these
decisions can be made nearly independently, but they may influence each other.
Decisions that influence each other can be combined to decision bundles. In Figure 1
decision bundles are represented by a dark grey box behind the corresponding
decision (e.g. test focus and test intensity belong to one and the same bundle).

The Testing Process - A Decision-Based Approach 5

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

Moreover, two different perspectives on the decisions can be identified. One
perspective contains decisions which influence the testing process (called process-
oriented decisions), i.e. which test artifacts will be created. Another perspective
contains decisions concerning the system under test (called system-oriented decisions),
i.e. how the system will be tested. The top level decisions try to give answers to the
question which parts of the software system have to be tested. For this purpose the roles
responsible for decisions on this level use information contained in the specification of
the system (e.g. in the requirements specification, in the architecture or design
specification). The subsequent levels make decisions on how the (parts of the) system
should be tested. The lower the level, the better the tester can specify how the parts of
the system should be tested. On the last two levels, decisions concerning the evaluation
of the test runs have to be made.

In the following, we first introduce important roles of the testing process followed
by a detailed description of the decision hierarchy.

3.1 Testing Roles

Since the testing process consists of a series of activities, roles responsible for these
different activities have to be assigned. In our research work we distinguish between to
categories of roles: testing roles and test supporting roles. Testing roles subsume all
roles directly involved in the testing process which are responsible for decisions to be
made during the testing process. The test manager, the test designer and the tester are
typical testing roles [22]. Test supporting roles subsume all roles of the software
development process which deliver information essential to make decisions during the
testing process. E.g. the requirements engineer and the system architect are typical test
supporting roles.

The test manager is responsible for activities such as planning and controlling of
the testing process. This includes resource planning and scheduling as well as risk
analysis activities. It is his/her task to enable and to ease the activities of other testing
roles during the process. Furthermore, he/she has to decide which parts of the software
have to be tested in which way. At the end of the testing process he/she decides whether
the test activities were successful and whether they can be finished or not. The test
manager communicates especially with the test designer and with the testers as well as
with the project manager of the software development project. The test manager makes
decisions mainly on the test goal and test strategy level as well as on the test evaluation
level.

The test designer, on the one hand, supports the decisions of the test manager, i.e.
he/she helps to select the parts of the software to be tested or the required testing
strategy to be applied. On the other hand he/she is responsible for the design of the test
cases. Therefore, he/she applies different test design techniques to derive test cases on
the basis of the specification of the software system to be tested. The test designer is
involved in nearly all activities of the testing process, except the test planning and
controlling tasks. Therefore, he/she intensively communicates with the test manager and
the testers, but also with the supporting testing roles (e.g. with requirement engineers,
system architects, system designers, programmers, and with the project manager) to
gather information on the system under test.

6 L. Borner, T. Illes-Seifert, B. Paech

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

The main task of the tester is to realize the test design defined by the test designer.
His/Her main activities subsume the execution of test cases and the logging of the
results of a test run. In the case of automation the tester is responsible for the
development of the test automation scripts and of the test environments. The main
communication partner of the tester is the test designer, but the tester also
communicates with some test supporting roles, e.g. with requirement engineers, system
designers or programmers.

3.2 Specification Level

The specification level is the top level of the decision hierarchy and contains decisions
which deal with the completeness of the test basis. The test basis includes all
information needed for a successful start of the testing process and often consists of the
specification of the software system at different development stages (e.g. requirements
specification or system design specification). The test basis defines a set of test objects,
their behavior, their input and their output as well as the specification of possible
dependencies between the test objects. We presume the definition in [11] of a software
system, including its specification as well as its implementation (represented by code)
and define a test object to be a part of a software system. At specification level it has to
be decided, whether the test basis is complete or not. If information in the test basis is
missing, the test designer has to complete the given specification. To gain an exhaustive
test basis he/she cooperates with the creator of the test basis (e.g. requirement engineer,
system architect, system designer, programmer, etc.) to identify and complete the
missing information. Missing information in the test basis can lead to the fact that
critical parts of the software are overlooked and thus remain untested. The decisions on
this level influence nearly all decisions on the lower levels. They are the basis for the
selection of the test foci and the test intensity, as well as the basis for decisions on the
testing strategy, the test design and the realization.

3.3 Test Goal Level

Considering that a software project usually is limited in time, not all parts of the test
basis can be tested. Therefore, at test goal level the test manager and the test designer
have to decide which parts of the system have to be tested and which not. For this
purpose, it is essential to possess a complete test basis in order to select the critical test
objects. If some important information is missing in the test basis and can consequently
not be considered in the decisions, critical parts of the software can be overlooked and
thus remain untested. This may lead to a dangerous situation in which the final software
release contains critical defects.

We denote all parts of the system which have been selected to be tested as test foci.
Usually, the test foci represent all critical parts of the test basis. Critical in this context
means, e.g. that the corresponding parts of the software will be used frequently during
run time, that they will cause high damage (to the user, to the software system or to the
environment) if they fail, that they are very complex so that the probability to fail is
high or that they may contain already known defects.

The Testing Process - A Decision-Based Approach 7

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

Besides time pressure within the testing process another constraint influences the
decisions on this decision level: cost. The cost constraints lead to a limitation of
resources needed within the testing process, e.g. the number of test designers and testers
or the budget for hardware, software or for staff training. Therefore, the existing
resources have to be split up among several test foci. To grant the correct assignment of
resources to the various test foci, it has to be decided which test intensity (measured
e.g. by man days or funds) has to be assigned to a single test focus, i.e. how intensively
a single test focus will be tested. Therefore, the test intensity serves as an indicator for
the required test effort per focus and is used by the test manager to allocate resources to
the test foci.

The decisions on test intensity and test focus influence each other and consequently
belong to a bundle. Decisions on the test end criteria can be made independently from
this bundle. The test end criteria define conditions which have to be fulfilled to finish
the testing activities, e.g. they can give information about the required rate of successful
test runs. The test manager is responsible for the selection and definition of these test
end criteria.

3.4 Test Strategy Level

After the test foci and the test intensities have been identified, the test manager and test
designer decide on the test strategy to be used in the testing process. The test strategy
comprises decisions related to the test design techniques, the test model(s) and its
coverage(s) as well as the ideal test order. One decision to be made concerns the test
design technique which will be used to derive test cases and test data from the test
basis. For each test level (system, integration and unit test level) a countless number of
test design techniques can be found in the literature (e.g. in [3], [4], [16], [22]).
Therefore, existing test design techniques, the defined test foci and test intensities have
to be taken into account in order to select the most adequate test design technique(s).

In parallel, decisions concerning the test model have to be made by the test
designer. A test model facilitates the derivation of test cases and test data in comparison
to the derivation from an informal specification. A state based model or a control flow
model are examples of test models. The test design technique influences the selection of
the test model and vice versa. Later in the testing process, the selected test design
techniques have to be applied in order to derive test cases and test data to achieve the
given test coverage and to fulfill the test coverage criteria. The test coverage is an
indicator for the number of test cases to be derived. The test design technique
influences the decision on coverage criteria and vice versa, e.g. if state based test design
techniques are used to derive test cases, it will not be appropriate to define equivalence
class coverage as test coverage indicators.

Furthermore, on this decision level an ideal test order to test the different test
objects has to be specified. The ideal test order represents an optimal order to test the
different parts of the system by taking into account the information on the test foci, on
test intensity and on the coverage criteria. An example of such an ideal test order would
be that all test objects with the highest test intensity should be tested first, followed by
the ones with the next lowest intensity and so on.

8 L. Borner, T. Illes-Seifert, B. Paech

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

3.5 Test Design Level

The test design level is the most important and most complex level of the testing
process. On this level, the test designer decides how to apply the predefined test design
techniques to reach the required test coverage. The main decision on this level is how to
test the different test foci, i.e. the selected test objects. Therefore, the given test design
techniques are applied to derive logical test cases (also called abstract test cases) [12],
[22]. A logical test case gives an abstract description of how to test a specific aspect of
the objects under test. A logical test case usually contains the description of a general
goal (What is to be tested by this test case?), the required pre- and post-conditions
(Which conditions have to be fulfilled so that this test case can be executed / after the
execution of a test case?) and the various steps of this test case (Which steps have to be
performed?). Additionally, the test case describes how test data have to be made
available (e.g. input by a tester or input from a dedicated database) and how to observe
the expected response of the test object [13]. Logical test cases do not describe a
concrete action to be executed on the test object (e.g. “press the button with the label
‘submit’”). They rather specify a more general action that should be executed (e.g.
“user submits the input”).

In parallel to the test case design, it has to be decided which logical test data serve
as an input for the test objects within the test case. The logical test data represent the
abstract description of the data to be sent to and returned by the test object. For example
this could be the description of an equivalence class or a set of possible values ([3],
[16], [22]). Both, the specification of a logical test case and the required test data, are
connected. A logical test case without the required logical test data is not complete and
vice versa.

The third decision on this level concerns the definition of the logical test
environment. The test designer has to decide what kind of tools, software or hardware,
is needed during the execution of the test cases. The description of the logical test
environment is also abstract similar to the specification of the logical test cases or test
data and represents the general requirements on the test environment. It illustrates the
general requirements on the test system. E.g. the test designer decides that the execution
of a test case needs a monitor to record the outcome of the test objects or to observe the
inner communication of a set of test objects, but he/she does not specify which specific
monitor is required.

The last decision at the test design level discussed here is related to the logical test
order. This order refines the ideal test order considering dependencies between test
cases as well as information about planned test environment factors. Execution
efficiency and parallelism are the main criteria influencing this decision. A typical
planned project environment factor which can lead to a changed ideal order is the
planned completion time for the corresponding test object (realization), i.e. a test focus
with high assigned test intensity cannot be tested as defined in the ideal test order
before the corresponding test object has been implemented.

The Testing Process - A Decision-Based Approach 9

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

3.6 Test Realization Level

The test realization level details the logical representation of the test cases, of the test
data as well as of the test environment. It contains all decisions which influence the
execution of a test case. It contains all required decisions which affect the execution of
a test case. Most of the decisions on this level are made by the tester with support of the
test designer. This level comprises decisions on the concrete test order, on concrete test
cases, concrete test data and the concrete test environment. Setting up the concrete test
order means to identify an actual executable test order (Which is the best possible order
for the concrete test case execution?) considering the logical test order and the project
environment factors (Which is the best order considering the actual project
circumstances?).

In parallel, the test refines logical test cases by concrete test cases. He/she adds
information on the specific behavior of the test case and the test object. Concrete test
cases contain all information needed to execute the test case. The concrete actions
within every single test step are specified in detail, i.e. the tester specifies how to send
test data to the test object (e.g. “insert the age into the input field labeled ‘Age’ and
press the button labeled ‘submit’”). Furthermore, the check actions of the test cases are
described in more detail, i.e. the tester specifies all information needed to decide, if a
test passes or fails including the specification of the expected response and how it can
be verified.

To complete the specification of a concrete test case, the detailed description of the
concrete test data is needed. Consequently, it has to be decided which concrete
“instances” of the logical test data are used in the concrete test cases. The logical test
data only give an abstract description of the data required by the test case. The task of
the tester is now to choose concrete “instances” for the logical test data. Concrete
instances of the logical test data can be representative values for an equivalence class or
any other value that fulfils the conditions contained in the abstract description of the
corresponding logical test data.

The last decisions on the test realization level are decisions on the concrete test
environment. Here the tester has to take into account the description of the logical test
environments and the specification of the logical test cases, in order to specify the
concrete test environments for the test cases. The concrete test cases need a
corresponding concrete test environment (e.g. the specification of concrete hardware
and software needed) to be executable

After all decisions on this level have been made, the tester is able to realize the test
cases and the test environment (e.g. by implementing the required test code), to execute
the test cases (i.e. manually or automatically) and to record the results of the test run
(e.g. by using monitors or test tools).

3.7 Test Run Level

The test run level deals with the evaluation of test run results. After the execution of a
test case the tester has to decide, whether the test run was successful, that means
whether the tested test objects have not shown the expected behavior and have not
delivered the expected outcome. If this is the case, i.e. the test run was successful, the

10 L. Borner, T. Illes-Seifert, B. Paech

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

tester has to decide whether the test case actually revealed a defect in the realization of
the test objects or not. In the latter case the defect can be found in the test case
specification (logical or concrete), or in the realization of the test environment. To
evaluate the test run, the tester needs the logs of the test run, including executed steps
and actual test data (if available, former test logs can be used) and the specification of
the expected result. By comparing the expected and actual results, the tester can decide
whether a defect in a test object exists – consequently he/she performs a test run
evaluation. In the case of a defect in the test object the test manager assigns a state (e.g.
open), a priority (e.g. patch) and a weight (e.g. system crash) to a defect [22].

3.8 Test Evaluation Level
This level contains the decision whether the test activities can be finished. The

decisions in the test cycle evaluation check whether the test end criteria have been
fulfilled and whether every test focus has been tested with the required test intensity.
Furthermore, the defects not found within this test cycle are estimated by using a metric
like the defect detection rate. The decision not to finish the test cycle, leads to a new
iteration of some (or maybe all) of the testing tasks and decisions. These decisions are
made by the test manager.

4 Applying the Decision Hierarchy

In this section we apply our decision hierarchy to the system and integration testing
in order to identify the specific issues and decisions of both processes. The purpose of
this task is to identify the specific decisions in both testing processes by instantiating
the generic decision hierarchy. Figure 2 sums up the main results of this instantiation. It
illustrates all decision levels of the testing process as well as the decisions in the generic
testing process (left column), the specific decisions in the system testing process
(middle column) and the specific decisions in the integration testing process (right
column). Specific decisions in the middle and the right columns refine corresponding
decisions in the generic testing process at the same decision level. This is illustrated in
Figure 2 by using two labels within one “decision box”. The upper label of a box
describes the decision in the generic testing process. The lower label specifies the
corresponding specific decision in the system testing process, respectively in the
integration testing process.

In the following subsections we describe the specific decisions in the system and
integration testing in more detail.

4.1 Evaluation Framework for the System and Integration Testing
Processes

We applied our decision hierarchy to the system testing process (STP) and
integration testing process (ITP) in order to identify the specific issues and decisions in
both processes by instantiating the generic decision hierarchy. Figure 2 summarizes the
main results. It illustrates all decision levels as well as the corresponding decisions in
the generic testing process (left column), the specific decisions in the system testing
process (middle column) and in the integration testing process (right column). Specific
decisions in the middle and the right columns refine corresponding decisions in the

The Testing Process - A Decision-Based Approach 11

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

generic testing process at the same decision level. This is illustrated in Figure 2 by
using two labels in one “decision box”. The upper label of a box describes the decision
in the generic testing process. The lower label specifies the corresponding specific
decision in the STP, respectively in the ITP.

12 L. Borner, T. Illes-Seifert, B. Paech

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

Te
st

 G
oa

l L
ev

el

Te
st

 D
es

ig
n

Le
ve

l

Te
st

 R
ea

liz
at

io
n

Le
ve

l

Te
st

 R
un

 L
ev

el

Te
st

 S
tr

at
eg

y
Le

ve
l

Te
st

 E
va

lu
at

io
n

Le
ve

l

Te
st

 D
es

ig
n

Te
ch

ni
qu

e

Te
st

 E
nd

C
rit

er
ia

Id
ea

l
Te

st
 O

rd
er

Lo
gi

ca
l

Te
st

 C
as

e

Lo
gi

ca
l

Te
st

 D
at

a

C
on

cr
et

e
Te

st
 C

as
e

C
on

cr
et

e
Te

st
 D

at
a

C
on

cr
et

e
Te

st
 E

nv
iro

nm
en

t

Te
st

 R
un

Ev

al
ua

tio
n

C
on

cr
et

e
Te

st
 O

rd
er

Te
st

 C
yc

le
Ev

al
ua

tio
n

Te
st

In

te
ns

ity
Te

st

Fo
cu

s

C
ov

er
ag

e
C

rit
er

ia

Te
st

B

as
is

Lo
gi

ca
l

Te
st

 E
nv

iro
nm

en
t

Lo
gi

ca
l

Te
st

 O
rd

er

Te
st

 B
as

is
C

om
po

ne
nt

s
&

D
ep

en
de

nc
ie

s

Te
st

 F
oc

us
C

rit
ic

al
 C

om
po

ne
nt

s
&

D
ep

en
de

nc
ie

s

Id
ea

l T
es

t O
rd

er
In

te
gr

at
io

n
R

ul
es

Lo
gi

ca
l T

es
t E

nv
iro

nm
en

t
Lo

gi
ca

l M
on

ito
rs

Lo
gi

ca
l T

es
t E

nv
iro

nm
en

t
S

tu
bs

 &
 D

riv
er

s

Lo
gi

ca
l T

es
t E

nv
iro

nm
en

t
P

oi
nt

s
of

 O
bs

er
va

tio
n

&
 C

on
tro

l

Lo
gi

ca
l T

es
t O

rd
er

In
te

gr
at

io
n

O
rd

er

Lo
gi

ca
l T

es
t O

rd
er

In
te

gr
at

io
n

S
te

p
S

iz
e

C
on

cr
et

e
Te

st
 E

nv
iro

nm
en

t
C

on
cr

et
e

S
tu

bs
 &

 D
riv

er
s

C
on

cr
et

e
Te

st
 E

nv
iro

nm
en

t
C

on
cr

et
e

Te
st

 O
bj

ec
ts

C
on

cr
et

e
Te

st
 E

nv
iro

nm
en

t
C

on
cr

et
e

M
on

ito
rs

G
en

er
ic

 T
es

tin
g

Pr
oc

es
s

In
te

gr
at

io
n

Te
st

in
g

Pr
oc

es
s

C
on

cr
et

e
Te

st
 O

rd
er

C
on

cr
et

e
In

te
gr

at
io

n
O

rd
er

Sp
ec

ifi
ca

tio
n

Le
ve

l

Te
st

M

od
el

Te
st

 B
as

is
Fu

nc
tio

na
l a

nd
 Q

ua
lit

y
R

eq
ui

re
m

en
ts

Te
st

 F
oc

us
C

rit
ic

al
 F

un
ct

io
na

l a
nd

 Q
ua

lit
y

R
eq

ui
re

m
en

ts

Te
st

 D
es

ig
n

Te
ch

ni
qu

e
D

eg
re

e
of

 A
ut

om
at

io
n

C
ov

er
ag

e
C

rit
er

ia
M

od
el

 C
ov

er
ag

e

Lo
gi

ca
l T

es
t E

nv
iro

nm
en

t
Lo

gi
ca

l A
ut

om
at

io
n

To
ol

s

Lo
gi

ca
l T

es
t O

rd
er

Te
st

 C
as

e
O

rd
er

Lo
gi

ca
l T

es
t E

nv
iro

nm
en

t
E

xt
er

na
l S

ys
te

m
s C
on

cr
et

e
Te

st
 D

at
a

G
U

I L
ay

ou
t

Sy
st

em
 T

es
tin

g
Pr

oc
es

s

C
on

cr
et

e
Te

st
 D

at
a

G
U

I D
at

a
C

on
cr

et
e

Te
st

 C
as

es
G

U
I S

te
ps

Te
st

 G
oa

l L
ev

el

Te
st

 D
es

ig
n

Le
ve

l

Te
st

 R
ea

liz
at

io
n

Le
ve

l

Te
st

 R
un

 L
ev

el

Te
st

 S
tr

at
eg

y
Le

ve
l

Te
st

 E
va

lu
at

io
n

Le
ve

l

Te
st

 D
es

ig
n

Te
ch

ni
qu

e

Te
st

 E
nd

C
rit

er
ia

Id
ea

l
Te

st
 O

rd
er

Lo
gi

ca
l

Te
st

 C
as

e

Lo
gi

ca
l

Te
st

 D
at

a

C
on

cr
et

e
Te

st
 C

as
e

C
on

cr
et

e
Te

st
 D

at
a

C
on

cr
et

e
Te

st
 E

nv
iro

nm
en

t

Te
st

 R
un

Ev

al
ua

tio
n

C
on

cr
et

e
Te

st
 O

rd
er

Te
st

 C
yc

le
Ev

al
ua

tio
n

Te
st

In

te
ns

ity
Te

st

Fo
cu

s

C
ov

er
ag

e
C

rit
er

ia

Te
st

B

as
is

Lo
gi

ca
l

Te
st

 E
nv

iro
nm

en
t

Lo
gi

ca
l

Te
st

 O
rd

er

Te
st

 B
as

is
C

om
po

ne
nt

s
&

D
ep

en
de

nc
ie

s

Te
st

 F
oc

us
C

rit
ic

al
 C

om
po

ne
nt

s
&

D
ep

en
de

nc
ie

s

Id
ea

l T
es

t O
rd

er
In

te
gr

at
io

n
R

ul
es

Lo
gi

ca
l T

es
t E

nv
iro

nm
en

t
Lo

gi
ca

l M
on

ito
rs

Lo
gi

ca
l T

es
t E

nv
iro

nm
en

t
S

tu
bs

 &
 D

riv
er

s

Lo
gi

ca
l T

es
t E

nv
iro

nm
en

t
P

oi
nt

s
of

 O
bs

er
va

tio
n

&
 C

on
tro

l

Lo
gi

ca
l T

es
t O

rd
er

In
te

gr
at

io
n

O
rd

er

Lo
gi

ca
l T

es
t O

rd
er

In
te

gr
at

io
n

S
te

p
S

iz
e

C
on

cr
et

e
Te

st
 E

nv
iro

nm
en

t
C

on
cr

et
e

S
tu

bs
 &

 D
riv

er
s

C
on

cr
et

e
Te

st
 E

nv
iro

nm
en

t
C

on
cr

et
e

Te
st

 O
bj

ec
ts

C
on

cr
et

e
Te

st
 E

nv
iro

nm
en

t
C

on
cr

et
e

M
on

ito
rs

G
en

er
ic

 T
es

tin
g

Pr
oc

es
s

In
te

gr
at

io
n

Te
st

in
g

Pr
oc

es
s

C
on

cr
et

e
Te

st
 O

rd
er

C
on

cr
et

e
In

te
gr

at
io

n
O

rd
er

Sp
ec

ifi
ca

tio
n

Le
ve

l

Te
st

M

od
el

Te
st

 B
as

is
Fu

nc
tio

na
l a

nd
 Q

ua
lit

y
R

eq
ui

re
m

en
ts

Te
st

 F
oc

us
C

rit
ic

al
 F

un
ct

io
na

l a
nd

 Q
ua

lit
y

R
eq

ui
re

m
en

ts

Te
st

 D
es

ig
n

Te
ch

ni
qu

e
D

eg
re

e
of

 A
ut

om
at

io
n

C
ov

er
ag

e
C

rit
er

ia
M

od
el

 C
ov

er
ag

e

Lo
gi

ca
l T

es
t E

nv
iro

nm
en

t
Lo

gi
ca

l A
ut

om
at

io
n

To
ol

s

Lo
gi

ca
l T

es
t O

rd
er

Te
st

 C
as

e
O

rd
er

Lo
gi

ca
l T

es
t E

nv
iro

nm
en

t
E

xt
er

na
l S

ys
te

m
s C
on

cr
et

e
Te

st
 D

at
a

G
U

I L
ay

ou
t

Sy
st

em
 T

es
tin

g
Pr

oc
es

s

C
on

cr
et

e
Te

st
 D

at
a

G
U

I D
at

a
C

on
cr

et
e

Te
st

 C
as

es
G

U
I S

te
ps

Fi
gu

re
 2

. S
pe

ci
fic

 d
ec

is
io

ns
 in

 th
e

sy
st

em
 a

nd
 in

te
gr

at
io

n
te

st
in

g
pr

oc
es

se
s

The Testing Process - A Decision-Based Approach 13

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

In the STP as well as in the ITP, decisions concerning the test basis and test focus
are refined. Both testing processes deal with different kinds of information and
specifications, e.g. functional and quality requirements in the STP and components and
dependencies in the ITP in order to decide on the critical parts to be tested. On the test
strategy level the integration testing process defines several integration rules to provide
guidelines for the later integration test order. In the STP decisions on model coverage
and the degree of automation refine the generic decisions.

At test design level both processes refine the decisions on the logical test
environment and the logical test order. In the STP, the kind of external systems and the
automation tools to be used in the test execution phase are chosen, whereas in the ITP
decisions on the required stubs, drivers, monitors and the points of observation and
control are made. In the ITP the focus of the test order lies on the integration order and
the integration step size, i.e. the order and the number of components added in one
integration step. On this level, the STP decisions on the optimal test case order
minimizing the setup-overhead for the test cases play an important role.

At test realization level the STP refines the decisions on concrete test data and
concrete test cases whereas the ITP deals with decisions on the concrete test
environment and the concrete test order. Especially for the STP, decisions concerning
GUI steps are important in order to define the concrete test cases. Moreover, GUI data
is used to select concrete test data. In parallel, the GUI layout, i.e. how the GUI data is
arranged on the screen, influences the concrete test cases. At test realization level, the
ITP defines a concrete test order considering the real completion time of every
component, the integration rules, order, and step size. Furthermore, decisions on how to
prepare the test object (e.g. inserting points of control and observation), how to
implement concrete monitors, stubs and drivers have to be made. On the last two
decision levels there are no specific decisions in the STP and the ITP.

4.2 Evaluation Framework for Testing Tools
The decision hierarchy served as the basis for the definition of a questionnaire used

in a survey evaluating 13 commercial and open source test management tools [14]. The
evaluation is primarily based on the information provided by tool vendors in the
questionnaire. The goal was to analyse to what extent a decision is supported by a test
management tool. Based on the decision hierarchy, questions addressing the functional
characteristics of the testing tool can easily be derived. E.g. if a test management tool
integrates requirements management functionality, it would provide support for decisions
on the specification level by facilitating the identification of functional and quality
requirements.

In the following, we evaluate an open source testing tool in order to exemplify the
use of the decision hierarchy as an evaluation framework for testing tools. Salomé TMF
(Test Management Framework) [25] is an open source test management tool, which is
developed by the ObjectWeb [26] consortium. Main goals of the consortium subsume
the development of distributed, component based middleware. The project Salomé TMF
has been registered in May 2005.

Salomé TMF supports the documentation of requirements by a plug-in. In a text
box, a requirement can be specified and any attachments can be assigned. Thus, the
decisions concerning the test basis are rudimentarily supported by the tool. None of the
decisions on the test goal and test decision level are supported by Salomé TMF. A test
suite subsumes a set of tests ordered in a sequence in a test campaign. A test contains

14 L. Borner, T. Illes-Seifert, B. Paech

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

several actions and parameters. Thus, the documentation of the decisions concerning
the logical test cases (= tests), the logical test order (=test campaign) and the logical test
data (= parameters) is supported by the test management tool. Parameters can be refined
by concrete values (data sets). Additionally, Salomé supports the specification of
concrete environment parameters (environment parameters and values) and of concrete
test sequences (execution). Consequently, the tool supports the documentation of almost
all decisions on the test design and test realization level. The specification of the
expected and actual test results is possible, but Salomé does not support the definition
of metrics which allow the evaluation of a test cylcle. The export to an external bug
tracking system (Bugzilla [27]) is only possible, where a complex analysis of test
results is possible.

familyfamily

suitesuite testtest

test campaigntest campaign

executionexecution

resultresult

requirementsrequirements

*

1

*1

*

*

1

*

*

1

*

data setdata set
*

test plantest plan

*

1

*

1

defects
(management by an

external tool)

defects
(management by an

external tool)

**

environmentenvironment *1

*
1

1

*

parameterparameter
*

*

1

*
*

*

*
*

projectproject
1 1

actionaction

1

*

*
*

Figure 3. Salomé conceptual model

Table 1 represents the evaluation of the open source test management tool Salomé

TMF. The test tool supports mainly the documentation of decisions on the test design
and test realization level. Thus, this tool is useful mainly for test designers and testers.
Decisions on the specification, test run and evaluation level are supported only
rudimentarily. The tool does not support the decision making process itself, but the
documentation and the management of the decisions and their resulting artefacts.

The Testing Process - A Decision-Based Approach 15

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

Decisions Tool

Generic tesing process Salomé TMF

Test intensity
Test end criteria
Test model
Coverage criteria

Ideal test order
Logical Test Case X

Logical Test Data X
Logical Test Order X
Concrete Test Case
Concrete Test Environment X

Concrete Test Order X

Test Run Level Test Run Evaluation (X)
Test Evaluation Level Test Cycle Evaluation (X)

Test Realization Level

Concrete Test Data X

Test Design Level
Logical Test Environment

(X)

Test goal level Test focus

Test strategy level

Test design technique

Decision level
Specification level Test basis

Table 1 - Evaluation of Salomé TMF

4.3 Test Process Analysis
Based on our decision hierarchy, the testing process of an organisation was analyzed

in order to find its strengths and weaknesses. The organisation we refer to provides
system solutions in the area of remote operations. Testers in this organisation are
organized in an independent testing group. The ratio of testers to developers is 1:4. The
test process analysis is based on document reviews as well as on interviews. All
interviewees are experienced testers, with up to ten years of experience. In the following
we describe the results of our analysis.

All decisions at specification level are made by the requirements engineering team,
whereas the rest of the decisions are made by the testing team. Furthermore, there are
decisions made implicitly, e.g. all decisions at test goal and test strategy level and
decisions made explicitly, e.g. all decisions at test design level. Implicit decisions are not
documented, whereas explicit decisions are (partially) documented in test artefacts. All
decisions on the test goal and test strategy level are made implicitly. The testing team
does not perform a risk analysis in order to make sound decisions on test foci or test
intensities. Thus, the end of the testing activities is not determined by criteria defined in
advance, but by current test results and the “feeling” of the testing team regarding the
maturity and quality of the product. The test team uses two “standard” test design
techniques (domain testing and boundary value analysis). Other techniques are not
considered and evaluated with respect to their efficiency in the project’s context. Thus,
decisions on the test model, the design technique as well as on coverage criteria are made
implicitly, without a thorough analysis of alternatives.

Logical test cases and test data are explicitly defined on the basis of requirements and
documented in a test management tool. Decisions concerning concrete test cases and test

16 L. Borner, T. Illes-Seifert, B. Paech

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

data are made explicitly and are mostly documented during the test execution in test
protocols. The decision on the concrete test order is made explicitly, but only
documented in the case of a failed test run. A matrix of concrete test environments is also
managed by the testing team. Decisions on logical test environments as well as on the
logical test order are made implicitly and are not documented.

The evaluation of a test run is made explicitly for each executed test case. In the case
of a failure a process concerning the life cycle of a defect is passed, from its
classification, localization and correction to its retest. At the end of a test cycle, the test
team evaluates the results. This decision is made explicitly, but only summarizes the test
results. Since the definition of the test end criteria is not performed, the evaluation of the
test cycle occurs without reference to the defined criteria.

Implications: The decision-based analysis highlights the following main strengths
and weaknesses of the testing process. Missing involvement of the testing team in
decisions at specification level leads to input which is not well suited to be used in the
testing process. Thus, complex user scenarios are not part of the documentation provided
by requirements engineers. However, these scenarios would be very precious for the
system testing as they lead to realistic test cases.

Another weakness concerns the unstructured decision process on the test goal as well as
on the test strategy level. Thus, a thorough evaluation against goals is not possible. A
main opportunity improvement must include methodologies which help testers to define
objective and measurable goals in advance. A strength of the testing process is the
thorough documentation of decisions concerning test cases and test data supporting the
repeatability of test runs e.g. in regression testing.

4.4 Evaluation Framework for Testing Approaches in the Literature
The decision hierarchy can also be used as a framework for the comparison of testing

approaches. It allows the classification of approaches depending on whether they provide
(automated) support for a specific decision or not. Figure 4 exemplifies how approaches
to use case based testing can be compared on the basis of the decision hierarchy.
Comparing the approaches on the basis of the decision hierarchy allows the analysis of
their commonalities and differences. As illustrated in Figure 4, some decisions, e.g. the
decision concerning the test model, are supported by all approaches, whereas other
decisions, e.g. the decision concerning quality requirements, are partially supported by
only one subset of the approaches.

5 Conclusion

In this research work, we presented a generic decision hierarchy which contains
decisions to be made during the testing process at different decision levels. We evaluated
our hierarchy in four case studies.

Our decision hierarchy proved of value for both, for industry as well as for research
applications. Practitioners get a deeper understanding of the complex decision making
process during testing. Thus, the hierarchy can be used as an introducing guideline to the
complex area of testing processes. Additionally, this approach increases the awareness of
all decisions which have to be made during the testing process. The decision hierarchy is
useful for researchers, too. First of all it enriches the body of knowledge on the subject of
decision-making in the area of testing and builds the foundation for further research in
the area of rationale management. Rationale management research aims at making design

The Testing Process - A Decision-Based Approach 17

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

and development decisions explicit to all stakeholders involved. Additionally, as
illustrated in the case studies, the decision hierarchy can be used by researchers as an
evaluation framework in many contexts.

Based on our experience from applying this hierarchy in the case studies, we revealed
that our approach is universal enough to be applied in different contexts. However, it is
also specific enough to highlight the similarities and differences of the subject matters.
Additionally, our approach is easily to be learned. Thus, students as well as practitioners
get familiar with key issues of the testing process without having to go into details.
Finally, our hierarchy eases the communication among testers by providing a common
terminology.

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

Generic tesing process System testing process

 P
at

h
an

al
ys

is
 [1

]

 E
xt

en
de

d
U

C
s [

4]

 T
O

TE
M

 [5
]

 S
tru

ct
ur

al
 T

es
tin

g
w

ith
 U

C
s

[7
]

A
SM

 B
as

ed
 T

es
tin

g
[8

]

R
eq

ui
re

m
en

ts
 b

y
C

on
tra

ct
s

[1
8]

Te
st

in
g

w
ith

 U
C

s [
20

]

SC
EN

T
[2

1]

Si
m

ul
at

io
n

an
d

Te
st

 M
od

el
s

[2
3]

Functional requirements X (X) (X) (X) X (X) X X X

Quality requirements (X) (X) (X)

Critical functional requirements X (X) (X) (X)

Critical quality requirements (X)
Test intensity Test intensity (X)
Test end criteria Test end criteria
Test model Test model X X X X X X X X X
Coverage criteria Model coverage X X X X X X X X X

Ideal test order Ideal test order (X)

Logical Test Case Logical Test Cases X X X X
External Systems
Logical Automation Tools X X

Logical Test Data Logical Test Data X X X
Logical Test Order Test Case Order
Concrete Test Case GUI Steps (x) (x)
Concrete Test Environment Concrete External Systems, Concrete

Automation Tools
GUI Data (x) (x)
GUI Layout (x) (x)

Concrete Test Order Concrete Test Case Order
Test Run Level Test Run Evaluation Test Run Evaluation X X X X
Test Evaluation Level Test Cycle Evaluation Test Cylcle Evaluation

Decision level

Decisions Approaches

Specification level Test basis

Test focus

Test strategy level

Test design technique

Test goal level

Test Design Level

Test Realization Level

Degree of automation

Logical Test Environment

Concrete Test Data

X X X (X) X

Figure 4. Application of the decision hierarchy to compare testing approaches, X = Approach supports decision, (X) = Approach partially supports decision

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

References

[1] N. Ahlowalia, “Testing from Use Cases Using Path Analysis Technique”, International
Conference On Software Testing Analysis & Review, 2002.

[2] A. Aurum, C. Wohlin, A. Porter, „Aligning Software Project Decisions: a Case Study“.
International Journal of Software Engineering and Knowledge Management, vol. 16, number
6, pp. 795 – 718, december 2006;

[3] B. Beizer “Software Testing Techniques”, Second Edition, Van Nostrand Reinhold, New
York, 1990

[4] R. Binder “Testing Object-Oriented systems”, Addison-Wesley, 2000
[5] L. Briand, Y. Labiche, “A UML-based Approach to System Testing”, Technical Report,

Carleton University, 2002.
[6] I. Burnstein, T. Suwannasart, and C. R Carlson, “Developing a Testing Maturity Model for

Software Test Process Evaluation and Improvement”, Proceedings of the IEEE International
Test Conference on Test and Design Validity, 1996

[7] A. Carniello, M. Jino, M. Lordello, “Structural Testing with Use Cases”, WER04 -
Workshop em Engenharia de Requisitos, Tandil, Argentina, 2004.

[8] W. Grieskamp, M. Lepper, W. Schulte, N. Tillmann, “Testable Use Cases in the Abstract
State Machine Language”, Second Asia-Pacific Conference on Quality Software, 2001.

[9] A. H. Dutoit, R. McCall, I. Mistrik, and B. Paech, “Rationale Management in Software
Engineering”. Springer-Verlag Berlin Heidelberg, 2006.

[10] IEEE Std. 829-1998, Software Engineering Technical Committee of the IEEE Computer
Society, IEEE standard for software test documentation, USA, 1998.

[11] IEEE Std. 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology.
New York, September 1990

[12] International Software Testing Qualifications Board, ISTQB Standard Glossary of Terms
used in Software Testing V1.1, (2005)

[13] T. Illes, B. Paech, “An Analysis of Use Case Based Testing Approaches Based on a Defect
Taxonomy”. In IFIP International Federation for Information Processing, vol. 227, Software
Engineering Techniques: Design for Quality, ed. K. Sacha, Boston Springer, pp. 211-222,
2006.

[14] T. Illes, H. Pohlmann; T. Roßner, A. Schlatter, M. Winter: „Software-Testmanagement
Planung, Design, Durchführung und Auswertung von Tests - Methodenbericht und Analyse
unterstützender Werkzeuge“, Heise Zeitschriften Verlag, 2006

[15] T. Koomen, and M. Pol, “Test Process Improvement: A step-by-step guide to structured
testing”. Addison-Wesley, 1999

[16] G.J. Meyers, “The Art of Software Testing”, John Wiley & Sons, New York, 1979
[17] D. J. Mosley, and B. A. Posey, “Just Enough Software Test Automation”, Prentice Hall, July

2002
[18] C. Nebut, F. Fleurey, Y. Le Traon, J.-M. Jézéquel, “Requirements by contracts allow

automated system testing”, Proc. of the 14th. IEEE International Symposium on Software
Reliability Engineering (ISSRE'03), 2003.

[19] B. Paech, and K. Kohler, “Task-driven Requirements in object-oriented development”. In
Leite, J. and Doorn, J. Perspectives on Requirements Engineering (2003). Kluwer Academic
Publishers 2003

[20] C. Rupp, S. Queins, „Vom Use-Case zum Test-Case“, OBJEKTspektrum, vol. 4., 2003.
[21] J. Ryser, M. Glinz, “SCENT: A Method Employing Scenarios to Systematically Derive Test

Cases for System Test”, Technical Report, University of Zürich, 2003.

20 L. Borner, T. Illes-Seifert, B. Paech

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

[22] A. Spillner, T. Linz, and H. Schaefer, “Software Testing Foundations - A Study Guide for
the Certified Tester Exam - Foundation Level - ISTQB compliant”. dpunkt.verlag, 2006

[23] J. Whittle, J. Chakraborty, I. Krueger, “Generating Simulation and Test Models from
Scenarios”, 3rd World Congress for Software Quality, 2005.

[24] T. Wolf, and A. H. Dutoit, “Sysiphus: Combining system modeling with collaboration and
rationale”, In
http://wwwbruegge.in.tum.de/publications/includes/pub/wolf2004GIRE/wolf2004GIRE.pdf
(2004)

[25] Salomé TMF, https://wiki.objectweb.org/salome-tmf/, last visited May 2007.

[26] Object Web Consortium, Open Source Middleware Konsortium
http://www.objectweb.org/index.html, last visited May 2007.

[27] Bugzilla, http://www.bugzilla.org/, last visited May 2007.

Acknowledgment

We would like to thank all interviewees for their cooperation and help in providing
information and insight into documents. Furthermore, we would like to thank Andrea
Herrmann for her helpful comments and Doris Keidel-Müller for reviewing previous
versions of this paper.

The Testing Process - A Decision-Based Approach 21

Copyright © Arbeitsgruppe Software Systems Engineering Heidelberg

Dokument Information

Titel The Testing Process - A Decision Based
Approach

Datum 04.09.2007

Version 1.0

Status Final

Verteilung http://www-
swe.informatik.uniheidelberg.

de/research/publications/reports.htm

Copyright 2005, Arbeitsgruppe Software Systems Engineering,
Heidelberg
Alle Rechte vorbehalten. Diese Veröffentlichung darf für kommerzielle
Zwecke ohne vorherige schriftliche Erlaubnis des Herausgebers in keiner
Weise, auch nicht auszugsweise, insbesondere elektronisch oder mechanisch,
als Fotokopie oder als Aufnahme oder sonst wie vervielfältigt, gespeichert
oder übertragen werden. Eine schriftliche Genehmigung ist nicht erforderlich
für die Vervielfältigung oder Verteilung der Veröffentlichung von bzw. an
Personen zu privaten Zwecken.

Document Information

Title The Testing Process - A Decision Based
Approach 20

Date 04.09.2007

Version 1.0

Status Draft

Distribution http://www-
swe.informatik.uniheidelberg.

de/research/publications/reports.htm

Copyright 2007, Software Systems Engineering, Heidelberg
All rights reserved.

