
Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2021), Copyright IEEE

Continuous Rationale Visualization
Anja Kleebaum, Barbara Paech

Heidelberg University
Institute for Computer Science

Heidelberg, Germany
{kleebaum, paech}@informatik.uni-heidelberg.de

Jan Ole Johanssen, Bernd Bruegge
Technical University of Munich

Department of Informatics
Garching b. München, Germany

{jan.johanssen, bruegge}@in.tum.de

Abstract—Continuous software engineering (CSE) is charac-
terized by frequent changes. It is challenging for developers to
change software while sustaining its high quality so that the
software is always deployable to the users. Rationale management
provides an opportunity to support the change process during
CSE. However, rationale management is not well integrated into
CSE. Even if the rationale is captured, e. g. in the issue tracking
system, it is difficult to access in the context of requirements,
code, and other software artifacts. In this paper, we present tool
support called ConDec to make rationale explicit during CSE
and to integrate rationale into a knowledge graph data structure
consisting of requirements, code, and other software artifacts.
The knowledge graph is visualized in various ways and the
developers can access the knowledge views from software artifacts
such as requirements and code. They can interact with and filter
the knowledge views. In particular, they can use transitive links,
for example, to access all the decisions made in the context
of a particular requirement or code file. We demonstrate the
usefulness of the knowledge views using a case study project.

I. INTRODUCTION

Software developers continuously make decisions and need
to reflect on former decisions during their work. Their know-
ledge about decisions is called decision knowledge or rationale
[1], [2]. They make decisions during various software engi-
neering activities, e. g., during the elicitation of requirements,
their implementation in code, and testing. Thus, the decisions
are not isolated but need to be reflected in the context of the
requirements, code, test cases, and other software artifacts.
Besides, the decisions depend on each other [3], [4].

Continuous software engineering (CSE) needs to be able
to handle frequent changes in the decisions and software arti-
facts [5]. Changes involve the risk to introduce inconsistency
through side and ripple effects. Documentation can become
outdated or bugs can be introduced in the software. Rationale
management is a software engineering workflow in which the
developers document their decision knowledge and exploit the
documentation [1]. In general, rationale management posi-
tively influences software development. For example, it pro-
motes knowledge sharing, prevents knowledge vaporization,
and supports the change process [6], [7], [8]. Thus, rationale
management can be valuable for CSE.

However, rationale management is not well integrated into
CSE. That means that CSE lacks systematic techniques and
tools for rationale management. In particular, it is not clear to
developers how to exploit the decision knowledge documen-

tation [9]. We argue that the developers need good views on
the documented decision knowledge in its context.

Our overall goal is to develop techniques and workflows for
a continuous rationale management. Similar to, for example,
unit testing, rationale management should be a well-integrated
part of CSE. Lightweight support for explicit rationale man-
agement should be integrated into the practices that developers
already do, for example, in managing requirements and devel-
opment tasks in the issue tracking system, in committing code,
reviewing and deciding about the acceptance of pull requests,
and in conducting meetings.

In [10], we presented ideas on knowledge visualization
during CSE. Since then, we develop the ConDec tools [11].
ConDec is open source and comprises extensions for exist-
ing software engineering tools1. It enables the developers to
document decision knowledge in the issue tracking system
(ITS) Jira and in the version control system (VCS) git using
lightweight annotations [12]. It builds up and visualizes a
knowledge graph of decision knowledge, requirements, code,
and other software artifacts. We refer to all software artifacts
as knowledge elements.

In this paper, we present views provided by ConDec on the
knowledge graph and we describe how these views integrate
into software development. In summary, the contribution of
the ConDec tools is not a single new visualization technique
but 1) the visualization of rationale and related knowledge,
which is often only implicit and not visualized, and 2) the
integration of various knowledge views into CSE.

In the remainder of the paper, we describe overall require-
ments for continuous rationale management in Section II. In
Section III, we describe our solution for these requirements:
the knowledge graph including explicit rationale, its views,
and how the ConDec users can tailor the views to their needs.
In Section IV, we describe a case study project that we used
to exemplify the views and to evaluate them. In Section V, we
discuss related work and Section VI concludes the paper.

II. CONTINUOUS RATIONALE MANAGEMENT

We describe the requirements for continuous rationale man-
agement, as well as the involved roles and their tasks.

1https://github.com/cures-hub; Video about the ConDec views and interac-
tion possibilities: https://se.ifi.uni-heidelberg.de/research/projects/condec.html

Definitive version available at https://doi.org/10.1109/VISSOFT52517.2021.00013

https://github.com/cures-hub
https://se.ifi.uni-heidelberg.de/research/projects/condec.html
https://doi.org/10.1109/VISSOFT52517.2021.00013

Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2021), Copyright IEEE

A. Requirements to support continuous rationale management

In the following, we list high level requirements (R1 – R5)
on the ConDec support for rationale management during CSE.

R1 Decision making support: Collaborative, incremental,
and rational decision making should be supported. In practice,
decisions are mostly made and documented in a naturalistic
way [13], [14]. This means that only a part of the decision
knowledge is documented, which makes it hard for other
developers to understand the decision and to be convinced of it.
Thus, ConDec should enable naturalistic decision making but
encourage the developers to collaboratively and incrementally
reflect on decisions made. In this way, the decisions and their
documentation evolve from being naturalistic to more rational.

R2 Documentation support: Non-intrusive, easy decision
knowledge documentation should be supported. The develop-
ers should be able to capture decisions and related decision
knowledge in their current development context, e. g., in the
issue tracking system, integrated development environment,
and during committing. They should not be required to change
their development context to capture decision knowledge.
Thus, ConDec should enable various documentation locations.

R3 Exploitation support: Non-intrusive, easy usage of
decision knowledge should be supported. The developers
should be supported in accessing the documented decision
knowledge from various documentation locations in the con-
text of other knowledge (software artifacts). They should be
supported in using the knowledge documentation during their
daily practices, e. g., when managing requirements and work
items in the issue tracking system, when writing code, or when
conducting meetings. In particular, the developers should be
supported in exploiting the documentation during change for
change impact analysis and change execution. ConDec should
offer views on the knowledge documentation and support
their customization for specific purposes, e. g., change impact
analysis. It should support easy knowledge sharing.

R4 High quality support: High documentation quality
wrt. consistency and completeness should be supported in
an easy way. The exploitation of knowledge documentation
is only useful if the documentation has high quality, i. e., is
complete and consistent. The developers should be supported
to create and maintain high documentation quality. ConDec
should have mechanisms for knowledge quality checking or
even enforcement integrated into the development process,
e. g., similar to checking and enforcement of unit test coverage.

R5 Support high amount: A high amount of know-
ledge documentation and exploitation should be supported.
Software development is knowledge-intense and documented
knowledge tends to become big with many knowledge el-
ements and links. ConDec needs to be able to tailor the
knowledge documentation so that it is useful.

B. Roles and their tasks

We distinguish two roles that we want to support with the
ConDec views: developers and the rationale manager.

requirement

decision 1
in ITS

work
item

decision 2
in ITS

commit

decision 3
in commit
message

code

decision 4
in code

comment

Fig. 1. Schematic illustration of an unfiltered knowledge subgraph. Decisions
1 and 2 are documented in the ITS, e. g., in the description or comments of the
requirement and work item, respectively. Decision 3 is captured in a commit
message and decision 4 is documented in code comments.

1) Developers: Developers could be further refined into
roles such as requirements engineers, product owners, software
architects, or testers. That means that their tasks are typical
tasks for these roles, such as eliciting, documenting, checking,
and managing requirements, designing software architecture,
implementing, and testing it. However, from our point of
view, all of these roles contribute to the development of a
software system by making decisions, e. g., on requirements,
design, or tests, and they reflect on decisions already made.
Thus, they produce and consume decision knowledge. In
particular, during the continuous rationale management, they
need to document their decision knowledge and exploit the
documented knowledge through knowledge visualization.

2) Rationale manager: The rationale manager is a role
whose task is to set up the continuous rationale management
process, e. g., by teaching the developers how to document and
exploit decision knowledge [15]. Another task of the rationale
manager is to monitor the rationale documentation and to
check and assure its high quality. For example, the rationale
manager checks that the documented decision knowledge is
complete, consistent, and linked to other knowledge.

III. KNOWLEDGE GRAPH WITH EXPLICIT RATIONALE

In this section, we describe the knowledge graph data
structure, how it is presented, and functionality to customize
the views to specific purposes, e. g. through transitive linking.

A. Knowledge graph data structure

The ConDec views work on a directed graph data structure
that we refer to as knowledge graph. The knowledge graph
consists of knowledge elements, i. e., software artifacts, and
relationships. Both, the knowledge elements and the relation-
ships can be of various types. High-level types of knowledge
elements are decision knowledge, system knowledge, and
project knowledge [16]. Decision knowledge elements cover
decision problems, i. e., issues to solve , alternative solution
options , decisions , pro- , and con-arguments . We
use the decision documentation model for flexible documenta-
tion of decision knowledge [17]. System knowledge elements
cover requirements, code, and test cases, whereas project
knowledge elements cover development tasks (work items),
commits, pull requests, and other process-related artifacts.

Definitive version available at https://doi.org/10.1109/VISSOFT52517.2021.00013

https://doi.org/10.1109/VISSOFT52517.2021.00013

Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2021), Copyright IEEE

Developers document decision knowledge in different doc-
umentation locations, in particular, in the description and
comments of tickets in the ITS, commit messages, code
comments, or as entire tickets with specific types [12]. This
enables the developers to easily document decision knowledge
within their current development context (R2). Regardless of
their origin and documentation location, ConDec automatically
adds the decision knowledge elements to the knowledge graph.

Relationships, i. e., links or graph edges, can be established
between the knowledge elements of all types in the knowledge
graph. The developers or the rationale manager can manually
link knowledge elements, but ConDec also offers the following
mechanisms for automatic link creation and maintenance:
1) ConDec automatically links tickets such as development
tasks, bug reports, or requirements in Jira with code in git
if the code was changed in a commit that contains the ticket
identifier in its commit message. Providing ticket identifiers in
commit messages established as a common convention [18].
2) ConDec automatically links decision knowledge elements
documented in Jira issue text (description or comments),
commit messages, and code comments to other elements. For
example, ConDec automatically links a decision problem to
the respective ticket (development task, bug report, or require-
ment). It links the solution options to the decision problem
and arguments to solution options according to their sequential
order in the text. Relationship types between solution options,
i. e., between decisions and alternatives, can be the following:
enables, constrains, forbids, comprises, subsumes, overrides,
and relates [3]. In addition, pro-arguments support solution
options, whereas con-arguments attack solution options. The
rationale manager can add custom element and link types.

Figure 1 sketches knowledge elements of different types
and their links in the knowledge graph. In this schematic
illustration, the decisions are the only decision knowledge
elements shown. Other decision knowledge elements, such as
the decision problems, alternatives, and arguments, should be
documented to detail the decisions.

We use the jGraphT library to implement the knowledge
graph data structure. Next to the data structure, this library
offers useful graph algorithms, such as for finding shortest
paths, which we use for transitive linking (Subsection III-C).

B. Views on the knowledge graph data structure

In the following, we list the views on the knowledge graph
(V1 – V7) with a short description and a usage example.
All the views use the same knowledge graph data structure
underneath, which enables to easily add new views. Note that
the views mostly show only parts of the entire knowledge
graph data structure for a project. We refer to such a part
as knowledge subgraph. The knowledge graph views are the
building blocks for higher-order support and views integrated
into software development. Table I gives an overview of the
roles, their tasks, and the respective ConDec support.

V1 Node-link diagram: ConDec visualizes the knowledge
(sub-)graph as a node-link diagram. Figure 2 shows an
example of the node-link diagram including an epic (Search

TABLE I
ROLES, THEIR TASKS, OVERALL REQUIREMENTS, AND CONDEC SUPPORT

Role Task and
Requirement

ConDec support Views

Developer

Collaboratively
make and share
decisions, R1, R3

Rationale backlog listing un-
resolved decision problems

V1, V2,
V4

Meeting agenda with explicit
decision knowledge

V3

Release notes with explicit
decision knowledge

V3

Chronology view plotting re-
cently documented and up-
dated knowledge elements

V5

Document decision
knowledge and
exploit knowledge
documentation,
R2, R3, R5

Jira issue view to see and in-
teract with knowledge graph
views from specific require-
ment or other Jira issue

V1, V2,
V4, V5,
V7

IDE extensions to navigate
from code file to knowledge
graph views centered around
this code file in Jira, F5

V1, V2,
V4, V7

CIA support through change
impact highlighting, F6

V1, V2,
V3, V4adj

Exploitation support through
transitive linking, F2

V1, V2,
V3,
V4adj, V6

Continuously
improve know-
ledge quality, R4

Quality/DoD checking result
visualization using nudging
mechanisms, F7

V1, V2,
V3, V4,
V5, V7

Rationale
manager

Assure high
documentation
quality, R4

Dashboard for rationale cov-
erage, intra-rationale com-
pleteness, checking of DoD,
and for other metrics

V6

Rationale backlog listing
knowledge elements that
violate the DoD

V1, V2,
V4

Processing, colored in blue), six user stories (e. g., As a search
engine user, I want to find documents that contain synonyms
to my search terms, so I don’t have to try each synonym
individually), code, and decision knowledge elements (also
colored). When documenting requirements using a hierarchical
requirements model, e. g., using epics and user stories, it
is interesting to see the user stories linked to the epic to
understand the epic. ConDec explicitly presents the decision
knowledge elements in addition to the requirements. Code files
are linked through the tool to work items (development tasks)
and the work items are linked to user stories. This is reflected
by links in the knowledge graph data structure. In Figure 2,
code files are transitively linked to user stories (omitting the
work items for better understanding). We use the vis.js network
library to create the node-link diagram.

V2 Knowledge tree view: ConDec visualizes knowledge
subgraphs starting from a selected knowledge element as a
tree. The selected element is the root in the tree. ConDec
provides two different visualizations: Figure 3 shows an in-
dented outline visualization (V2ind) starting from a user story.
Figure 4 shows a node-link tree diagram (V2nld) starting from
a decision problem (issue). ConDec’s knowledge tree views
are created using the jsTree and treant libraries, respectively.

Definitive version available at https://doi.org/10.1109/VISSOFT52517.2021.00013

https://jgrapht.org
https://visjs.org
https://visjs.org
https://www.jstree.com
http://fperucic.github.io/treant-js
https://doi.org/10.1109/VISSOFT52517.2021.00013

Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2021), Copyright IEEE

Fig. 2. Node-link diagram (V1) showing the context of an epic. The subgraph shows user stories, code, and decision knowledge reachable from the epic in
a link distance of 3 in the knowledge graph. Transitive links between user stories and code replace filtered-out work items (development tasks).

Fig. 3. Knowledge tree view (V2ind) with a user story being the root element.
The user story is linked to an epic (E), work items (WI), and decision
knowledge. Decision knowledge is also transitively connected to the user story
via the link to the work item.

Fig. 4. Knowledge tree view (V2nld) starting from a decision problem (issue).
The decision problem is linked to a user story. The user story is also linked
to further knowledge elements, but the subtree is collapsed.

Fig. 5. List view (V3) used as a stand-up table as part of a meeting agenda.
The unresolved decision problem (issue) is highlighted using red text color
to nudge the developers to collaboratively make and document a decision.

The knowledge graph can contain cycles. These cycles need
to be removed when converting the graph into a tree. Figure 8
shows that cycles are handled by duplicating knowledge ele-
ments in the tree views. In this example, a cycle is established
because the solution option Standard Parser for the issue
Which Solr query should we use? has two con-arguments that
are both linked to the same quality requirement (QR).

V3 List view: ConDec visualizes (parts of) the knowledge
graph as a list of knowledge elements. The list view can be
integrated as a stand-up table into meeting agendas in the wiki
using the ConDec Confluence extension so that the developers
can discuss recently made decisions and open decision prob-
lems during meetings (Figure 5). Besides, ConDec supports
the creation of release notes including explicit decision know-
ledge for knowledge sharing.

V4 Adjacency and criteria matrix view: ConDec visual-
izes (parts of) the knowledge graph as an adjacency matrix.
For decision problems, ConDec shows their solution options
(alternatives and the decision), arguments, and criteria as a
criteria matrix. Figure 6 shows a similar knowledge subgraph
as shown in Figure 4 as an adjacency matrix (only decision
knowledge is shown). A cell of the matrix is colored if

Definitive version available at https://doi.org/10.1109/VISSOFT52517.2021.00013

https://github.com/cures-hub/cures-condec-confluence
https://doi.org/10.1109/VISSOFT52517.2021.00013

Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2021), Copyright IEEE

Fig. 6. Adjacency matrix view (V4adj) for a decision problem. The matrix
cells are colored if there is a directed link (direction is important). The color
indicates the link/relationship/edge type in the knowledge graph.

Fig. 7. Criteria matrix view (V4cri) for a decision problem including solution
options (alternative and the decision), arguments, and criteria.

there is a directed link from a knowledge element in the
row to another knowledge element in the column. Link type
colors are fixed for default link types such as attacks (red)
and supports (green). To enable a flexible knowledge meta-
model, ConDec uses the hash value of custom link types such
as Epic-Story Link as the color. However, these hash colors
might not be intuitive. Figure 7 shows a criteria matrix for a
different decision problem. This view visualizes criteria used
during decision making as columns. Criteria can be QRs or
other aspects such as the implementation effort. The node-link
diagram (V1) or tree view (V2) can then be used to see all
decisions that support or attack a certain QR or other criterion
(Figure 8). For ConDec’s matrix views, we decided not to use
an external library but created it from scratch. This was the
easiest way to add the features described in Subsection III-C.

V5 Chronology view: ConDec visualizes the knowledge
elements of the knowledge graph in chronological order de-
pending on their creation time or time of last change/update.
Figure 9 shows decisions documented at the beginning of our
case study project (see Section IV) in chronological order.
In addition to showing decisions only, the chronology view
can be used to plot other knowledge elements at their date of
creation or the last update, e. g., requirements, code files, or
other decision knowledge elements. The knowledge elements
are either placed on a specific date (as shown in Figure 9) or
they range from their creation date to the date of the last update
depending on the filter criteria (Subsection III-C). ConDec’s
chronology view is created with the vis.js timeline library.

Fig. 8. Knowledge tree view (V2ind) for decision knowledge linked to a
quality requirement, which was one criterion for decision making in Figure 7.

Fig. 9. Chronology view (V5) of decisions made at the beginning of the case
study project. The x-axis shows the documentation date of the decisions. On
the y-axis, the decisions are grouped according to the developers (anonymized)
who documented them. Filtering criteria are shown at the top.

V6 Metrics view: ConDec visualizes metrics calculated on
the knowledge graph data structure in a dashboard, e. g. using
pie charts and box plots. Figure 10 shows a box plot and a
pie chart as an excerpt of the ConDec dashboard. ConDec’s
metric views are created using the Apache ECharts library.

V7 Detail view: This view shows the details of a specific
knowledge element, i. e., its attributes and meta-data. For
example, details can be the author, the description, the time

Fig. 10. Metrics view (V6). Left: Box plot to present the number of comments
per Jira issue. Right: Pie chart to give an overview where rationale elements
are documented.

Definitive version available at https://doi.org/10.1109/VISSOFT52517.2021.00013

https://visjs.org
https://echarts.apache.org
https://doi.org/10.1109/VISSOFT52517.2021.00013

Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2021), Copyright IEEE

TABLE II
FEATURES AVAILABLE IN KNOWLEDGE GRAPH VIEWS

View/Feature Filte
rin

g,
F1

Tran
sit

ive
lin

kin
g,

F2

Cha
ng

e ex
ec

uti
on

, F3

Spe
c.

lev
el

of
de

tai
l,

F4

Nav
iga

tio
n,

F5

CIA
, F6

DoD
, F7

Node-link diagram, V1 3 3 3 3 3 3 3

Tree, V2 3 3 3 3 3 3 3

List, V3 3 3 3 7 3 3 3

Adjacency matrix, V4adj 3 3 3 7 3 3 3

Criteria matrix, V4cri 3 7 3 7 3 7 3

Chronology, V5 3 7 3 3 3 7 3

Metrics, V6 3 3 7 3 3 7 3

Detail, V7 7 7 3 7 7 7 3

of creation and the last update, and other attributes. The
developers can use the views of the tools that ConDec extends,
e. g., the Jira issue view (Figure 15) or the code file view of
the integrated development environment (IDE) to see details
of a specific knowledge element.

C. Features: Filtering, interaction, and highlighting

The views on the knowledge graph data structure can be
adapted to specific purposes through filtering, highlighting,
and interaction. In the following, we list these features (F1 –
F7) with a short description and a usage example. Similar to
the goal that all views share the same data structure, our goal
was to support the same features for all the views to enable
easy rationale and knowledge management. However, there are
some differences due to the nature of the view (Table II).

F1 Knowledge graph filtering: Developers filter the know-
ledge graph using various filter criteria. For instance, filter
criteria are the knowledge type, status (e. g., resolved, unre-
solved, decided, rejected), documentation location (Jira issue,
Jira issue text, commit message, code comment), number of
hops/link distance, node degree (min and max number of
links), textual content, time, and decision levels [19] or groups
[20]. These basic filtering possibilities are the same for all
views that show more than one element, but some views
provide extra filter criteria, e. g., the chronology view (V5).
Figure 3, Figure 9, and Figure 12 show filtering possibilities.

F2 Transitive linking: Developers exploit transitive links
between knowledge elements. For example, they examine all
decisions made in the context of an epic. The decisions can
be documented in user stories, work items, commit messages,
and code files reachable from the epic. Examples for transitive
linking are shown in Figure 2 and Figure 12. Note that the
transitive links in the knowledge graph do not necessarily cre-
ate a transitive closure, i. e., only the elements that would not
be reachable are transitively linked (Figure 11). Algorithm 1
sketches the algorithm that we use to create transitive links.2

2https://github.com/cures-hub/cures-condec-jira/blob/master/src/main/java/
de/uhd/ifi/se/decision/management/jira/filtering/FilteringManager.java

requirement

decision 1
in ITS

work
item

decision 2
in ITS

commit

decision 3
in commit
message

code

decision 4
in code

comment

transitive

transitive

transitive

7

Fig. 11. Schematic illustration of transitive linking. In this example, the gray-
colored knowledge elements and links are filtered out. The red solid lines
represent transitive links that replace filtered-out elements. The dashed line
indicates a link that would be necessary to create a transitive closure. This
link is not created in ConDec because all the elements are already reachable.

Fig. 12. Epic with decision problems (issues) and decisions that are
transitively linked to the epic within the link distance 7 in the knowledge
graph data structure. Filtering possibilities and the context menu are shown.
The actual tree is longer and also contains the decisions in Figure 3.

F3 Change execution: Developers create, update, and
delete knowledge elements and links within the views of the
knowledge graph data structure. For example, they can add
new decisions for the implementation of a requirement using a
context menu as shown in Figure 12. They can add and delete
links, as well as update link types using drag and drop or by
clicking a matrix cell (V4). Some visualization libraries such
as vis.js offer additional manipulation possibilities.

F4 Specifying the level of detail: Developers change the
level of detail to either understand the big picture (e. g. how
knowledge elements relate to each other) or to see details (e. g.
a summary of a particular knowledge element). The node-link
diagram (V1) and chronology view (V5) allow to specify the
level of detail by zooming in and out. Besides, parts of the
view can be collapsed in the node-link diagram (V1), tree
(V2, Figure 4), and metrics (V6) views.

Definitive version available at https://doi.org/10.1109/VISSOFT52517.2021.00013

https://github.com/cures-hub/cures-condec-jira/blob/master/src/main/java/de/uhd/ifi/se/decision/management/jira/filtering/FilteringManager.java
https://github.com/cures-hub/cures-condec-jira/blob/master/src/main/java/de/uhd/ifi/se/decision/management/jira/filtering/FilteringManager.java
https://visjs.org
https://doi.org/10.1109/VISSOFT52517.2021.00013

Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2021), Copyright IEEE

Algorithm 1: Transitive linking, i. e. replacement of filtered-out knowledge elements on a graph path with links

Input: graph, selectedElement, linkDistance, filterCriteria
Result: filtered graph in that filtered-out knowledge elements (nodes/vertices) are replaced with transitive links (edges/relationships)

1 singleSourcePaths ← findAllShortestPaths(graph, selectedElement, linkDistance) // find all shortest paths starting from the
selected element in the unfiltered knowledge graph within the link distance e.g. using Dijkstra

2 filteredGraph ← createFilteredGraphThatMatchesFilterCriteria(graph, filterCriteria) // filter knowledge graph according to
filter criteria, e.g., element type, status, documentation location, node degree, decision levels

3 for element : filteredGraph.vertexSet() do // iterate over the remaining elements in the filtered graph
4 path ← singleSourcePaths.getPathTo(element) // get path in the unfiltered knowledge graph
5 lastUnfilteredElementOnPath ← selectedElement // remember visited element on path that is not filtered out
6 for elementOnPath : path.getVertexList() do // iterate over elements on the path in the unfiltered graph
7 if !filteredGraph.vertexSet().contains(elementOnPath) then // the element on the former path is filtered out
8 continue // keep on walking along the path until we find an element not filtered out
9 else // the element on the former path is still existing in filtered graph

10 if !filteredGraph.containsEdge(lastUnfilteredElementOnPath, elementOnPath) then // check whether link already exists
11 transitiveLink ← new Link(lastUnfilteredElementOnPath, elementOnPath, LinkType.TRANSITIVE)
12 filteredGraph.addEdge(transitiveLink) // add new transitive link between elements on the same path

13 lastUnfilteredElementOnPath = elementOnPath // remember visited element on path that is not filtered out

Fig. 13. Node-link diagram (V1) with change impact highlighting. Decision
problems (issues), solution options (decisions and alternatives), requirements,
and code files are shown that might be impacted by a change in the epic. The
color indicates the likelihood of change impacts: red elements are probably
more impacted by a change than green elements.

F5 Integrated navigation: Developers navigate to other
parts of the knowledge graph and to different knowledge graph
views. For example, the navigation is enabled through the
context menu (Figure 12), through hyperlinks on UI elements,
such as menu items and matrix headers (V4), or by clicking on
data points in the metrics plots (V6). ConDec also provides
extensions for IDEs (Eclipse and Visual Studio Code) that
enable to navigate from code files to the knowledge graph
views in Jira with the code file being the selected element.

F6 Change impact highlighting: When changing a know-
ledge element, developers estimate which other knowledge
elements need to be changed as well. The node-link diagram,
tree, list, and matrix views (V1 – V4) can be used for change
impact analysis (CIA). ConDec colors the knowledge elements
in these views according to the likelihood that they are affected
by a change in the selected element (Figure 13). ConDec
combines different CIA algorithms, in particular, a traceability
and a rule-based approach [21], [4].

F7 Quality highlighting: Developers see which knowledge
elements violate or fulfill the definition of done (DoD). If the
DoD is not fulfilled, they see which DoD criteria are violated.
ConDec introduces a DoD for knowledge documentation.
Criteria of the DoD are the rationale coverage (see Figure 16),

Fig. 14. Knowledge tree view (V2ind) with knowledge elements violating the
DoD and quality highlighting. The decision problem (issue) is colored in red
because it is unresolved, i. e., a decision needs to be made. The alternatives
are colored in red because no arguments are linked, i. e., a criterion for intra-
rationale completeness is violated (as indicated by the tooltip). The work item
(WI) is colored in red because its decision coverage is too low.

the intra-rationale completeness (see Figure 17) and other
criteria (e. g., that small code files and code files for unit
testing are not checked). ConDec checks whether the DoD
is fulfilled for knowledge elements in the knowledge graph
and visualizes the results of the check. There are various
ways to visualize the results of DoD checking. Figure 3 and
Figure 12 show the Quality Check tab which is colored in
green if the DoD is fulfilled. If the DoD is violated, this tab
is colored in orange (if some criteria are fulfilled) or in red (if
no criterion is fulfilled). Besides, the knowledge elements that
violate the DoD are highlighted with a red text color within
the knowledge graph views (Figure 14) to indicate quality
problems. Tooltips explain which DoD criteria are violated.
The indication of quality problems through text coloring is
done in V1 – V5. This should nudge the developers to improve
the DoD using ambient feedback nudging mechanisms [22].

ConDec also offers a rationale backlog with preset filter
criteria so that only knowledge elements that violate the DoD
are shown. In particular, the rationale backlog shows open
decision problems for which a decision still needs to be made
(or documented), challenged decisions, and all knowledge
elements that violate the DoD. We did not list the rationale
backlog as a separate knowledge graph view because it com-
prises the knowledge graph views but with special filtering.

Definitive version available at https://doi.org/10.1109/VISSOFT52517.2021.00013

https://github.com/cures-hub/cures-condec-eclipse
https://github.com/cures-hub/cures-condec-vscode
https://doi.org/10.1109/VISSOFT52517.2021.00013

Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2021), Copyright IEEE

IV. CASE STUDY AND EVALUATION

We applied ConDec during a student project that simulated
a CSE project in industry. The screenshots in this paper were
taken in this project to demonstrate the view usage in a realistic
context. In this section, we provide a brief description of this
project and a first evaluation of the view usage.

A. Project description

The goal of the project was to develop a web search engine
for the websites of Heidelberg University. The project started
in October 2020 and finished in March 2021. There were two
block courses at the beginning and end of the project lasting
fourteen days, respectively. During these block courses, the
students worked full-time on the project. We introduced the
students to rationale management and the ConDec tools using
a lecture on rationale management [15] at the beginning of the
project. During the semester, the students worked part-time on
the project. Five students were involved in the project. The
project followed the Scrum process with sprints lasting from
two weeks during the block courses to four weeks during the
semester. During every sprint, one student took the role of the
Scrum Master and was responsible for the sprint review that
was held at the end of every sprint. At the same time, this
student also took the role of the rationale manager. All other
students took the role of developers.

Next to the tasks listed in Subsection II-B and Table I,
we had the following major process requirements regarding
rationale management: 1) The rationale manager’s task was
to present explicit decision knowledge, i. e., decisions made
and open decision problems during the sprint review. For that
purpose, the developers should document decision knowledge
during the sprint using ConDec. 2) The rationale backlog
should only include unresolved decision problems at the end
of the sprint but no other knowledge elements that violate the
DoD so that the documentation quality is high. 3) The students
should include a stand-up table with decision knowledge into
agendas and protocols of their meetings (Figure 5). They
should create release notes with decision knowledge at the
end of every sprint.

The students used the issue tracking system Jira to docu-
ment requirements, development tasks, and bug reports. They
committed code to work items or to bug reports mentioning the
respective ticket identifier in the commit messages. They had
regular meetings with the customer who was a University pro-
fessor from another group. They elicited the requirements with
the customer and documented them, e. g., in the form of three
epics titled Search Input, Search Processing, and Search Result
Presentation and 13 user stories. The requirements elicitation,
documentation, checking, and management was an ongoing,
iterative process, i. e., the requirements documentation was not
fixed from the beginning, but for simplicity, we only report
the results. Next to the requirements, the developers created
tickets for major decision problems (issues) that they faced, for
example, Which framework should we use for the search
engine? and Which framework should we use as a web-
crawler? They captured solution options and arguments in the

Fig. 15. Decision knowledge captured in the description of a work item.

Fig. 16. Left: Pie chart to present the coverage of requirements and code
files with documented decisions within a link distance (number of hops) of
3 in the knowledge graph data structure of the case study project. Right: Pie
chart to present the DoD fulfillment and violation for all knowledge elements
in the project. The decision coverage is one criterion for the DoD.

description and comments of these issues. Later, they linked
the decision problems to requirements or work items, e. g., to
Install Solr and Install Nutch to make the knowledge elements
reachable within the knowledge graph. Besides documenting
decision problems as tickets (i. e. as entire Jira issues), the
developers also captured decision problems and other decision
knowledge elements in the text of requirements, work items
(Figure 15), and bug reports. They explored the documented
decision knowledge in the context of other knowledge using
the knowledge graph views (Section III).

In total, the students documented the following system and
project knowledge elements: Three epics, 13 user stories, six
quality requirements, one user role, four personas, 132 work
items (development tasks), 34 bug reports, and 658 code files
of types ts, html, and xml. They documented 729 decision
knowledge elements in two different documentation locations:
51 entire Jira issues (mainly for decision problems/issues) and
678 in the description or comments of existing Jira issues such
as user stories or development tasks (Figure 10). Figure 17
shows the distribution of the decision knowledge types and one
aspect of the intra-rationale completeness measured after the
project was finished. In total, 68 decision problems (issues),
102 decisions, 116 alternatives, and 443 arguments (either pros
or cons) were documented.

B. Measurement of view usage

This subsection describes an initial study to evaluate the
ConDec views. Our goal was to get an impression of which
views the developers and the rationale manager prefer.

Definitive version available at https://doi.org/10.1109/VISSOFT52517.2021.00013

https://doi.org/10.1109/VISSOFT52517.2021.00013

Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2021), Copyright IEEE

Fig. 17. Left: Distribution of rationale types. Right: Visualization of one
criterion (con-arguments against decisions) of the intra-rationale completeness.

Sprint

review 2

Break Start Break End

Sprint

review 3

Sprint

review 4

Sprint

review 5

0

500

1000

1500

2020−12−15 2021−01−01 2021−01−15 2021−02−01 2021−02−15 2021−03−01 2021−03−15 2021−04−01

Date

#
A

P
I

C
a

lls
 f
o

r
C

o
n

D
e

c
 V

ie
w

s
 p

e
r

D
a
y

Fig. 18. View usage approximated using the total number of REST API calls
per day during the case study project.

1) Data collection: The ConDec implementation uses a
REST API for the creation of the knowledge graph views. We
logged the usage of this REST API. The students knew that
we monitor the ConDec usage for evaluation purposes but we
told them that this does not influence the grading. We started
the data collection after the second sprint because then the
students seemed to be familiar with rationale management and
the ConDec views. At the end of the project, we interviewed
them to ask them for their attitude towards the ConDec views.

2) Data analysis: We analyzed the usage data of the REST
API using an R-Script3. We anonymized the collected data
but ensured that we only analyze the REST API usage of the
project participants. We analyzed the total usage over time and
also the total usage per view.

3) Results and discussion: Figure 18, Figure 19, and Ta-
ble III show the results of the view usage measurement.

Figure 18 shows that the total amount of view usage varied
during the project. In particular, before the sprint reviews, the
view usage seemed to be higher. A reason for this might be that
the participants had to tidy up their knowledge documentation
to present it to the customer during the sprint review. For that
purpose, they used the ConDec views. During the Christmas
break, there was only little view usage.

Figure 19 shows that the view usage differed between the
ConDec views and also between the developers, which are
called dev 0 – dev 4. Table III shows the total amount of
clicks per view. The knowledge tree views (V2) were most
often used (6890 number of REST API calls). More precisely,
the indented outline V2ind (Figure 3) was approximately used
twice as often as the node-link tree diagram V2nld (Figure 4).
When asking the project participants for their attitude towards
the ConDec views, they confirmed that the indented outline

3https://github.com/cures-hub/cures-condec-jira/tree/master/doc/logging/

Dashboard.jspa

release−note/getAllReleaseNotes.json

view/elementsFromBranchesOfProject.json

view/getEvolutionData.json

view/getMatrix.json

view/getTreant.json

view/getTreeViewer.json

view/getVis.json

dev 4

dev 3

dev 2

dev 1

dev 0

Total Number of REST API Calls for ConDec Views Per User in ISE2020

Number of clicks on view

0 500 1000 1500

Fig. 19. View usage approximated using the total number of REST API calls
per developer (anonymized) during the case study project.

was most useful because it provided the best overview. Regard-
ing the node-link tree diagram, they criticized that they often
had to scroll a lot, which they found not useable. The project
participants used the node-link diagram (V1) and adjacency
matrix (V4adj) similarly often. They stated that both views are
useful to see and manage links, i. e., their types and directions.
Link types and directions are not shown in knowledge tree
views. They emphasized that they liked the colorful presenta-
tion of link types in the adjacency matrix view. However, they
stated that both the node-link diagram and adjacency matrix
were not suitable to get a good overview of the documented
knowledge. The metrics plots (V6) were accessed through
the dashboard Servlet API, which plots various metrics at
once (for decision coverage, intra-rationale completeness, DoD
checking, and other general metrics such as distribution of
types and documentation locations of decision knowledge).
The project participants stated that they did not use the
dashboard and metrics plots very often because they used
the rationale backlog which lists all knowledge elements that
violate the DoD instead. The chronology view (V5) was not
used very often (only 29 clicks in total). When asking the
project participants about their attitude, they said that they did
not use the chronology view because they already included
a list of decision knowledge elements (V3) in their meeting
agenda and used it as a stand-up table. They found that the
chronology view could replace the list in meeting agendas,
but that using both the list and the chronology view is not
necessary. Similarly, they stated that they only created the
release notes listing all knowledge elements documented for a

TABLE III
TOTAL NUMBER OF CLICKS PER CONDEC VIEW

Knowledge Graph View #Clicks Name of REST/Servlet API

Node-link diagram, V1 373 view/getVis.json
Tree, V2ind 4652 view/getTreeViewer.json
Tree, V2nld 2238 view/getTreant.json

Adjacency matrix, V4adj 408 view/getMatrix.json
Criteria matrix, V4cri 0 view/getDecisionTable.json

Chronology, V5 29 view/getEvolutionData.json
Metrics, V6 233 Dashboard.jspa

Definitive version available at https://doi.org/10.1109/VISSOFT52517.2021.00013

https://github.com/cures-hub/cures-condec-jira/tree/master/doc/logging/
https://doi.org/10.1109/VISSOFT52517.2021.00013

Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2021), Copyright IEEE

TABLE IV
TOOLS FOR RATIONALE MANAGEMENT AND THEIR VIEWS

Tool Nod
e-l

ink
, V1

Tree
, V2

List
, V3

M
atr

ix,
V4

Chro
no

log
y,

V5

M
etr

ics
, V6

Deta
il,

V7

Other

ConDec 3 3 3 3 3 3 (3) 7

SEURAT [23], [24] 7 3 7 3 7 (3) 3 quality profile
report, rationale
task list

ADDSS [25], [26] 3 ? 3 ? 3 7 3 stakeholder
involvement

Decision Architect
[27]

3 3 ? 3 3 7 3 stakeholder
involvement

Kruchten’s ADD
Ontology Tool [28]

3 7 3 7 3 7 3 relationship list

Ontology-Driven Vi-
sualization Tool [29]

7 3 7 3 7 7 ? effect matrix

Compendium-based
ADD Tool [30], [31]

3 7 7 7 7 7 3

sprint because they were required to create it but did not use
it afterward. However, the release notes could be interesting
for the customer, but not all decisions should be included
then. The project participants did not use the criteria matrix
(V4cri) at all. They stated that, in general, they find it useful to
consider criteria such as quality requirements during decision
making, but they did not find it necessary in their project.
However, they linked work items to quality requirements and
used other knowledge graph views to inspect the knowledge
documentation in the context of the quality requirements.

4) Threats to validity: The number of API calls is one
indicator for view usage but needs to be assessed with caution:
As shown in Table I, the knowledge graph views V1 – V7
are the building blocks of support for a continuous rationale
visualization. In particular, the knowledge tree view V2ind lists
the knowledge elements with violating DoD in the rationale
backlog. Thus, whenever the developers accessed the rationale
backlog, the REST API of V2ind was called. There is no default
view when accessing the knowledge graph from Jira issues
such as requirements or work items. However, the ConDec
Jira plug-in remembers the view that a developer selected and
makes it the default until the browser session is finished.

V. RELATED WORK

In this section, we present related work regarding 1) the
visualization of rationale in its context to other knowledge
and 2) the integration of rationale management into CSE.

Table IV lists tools that visualize rationale and compares
their views with the ConDec views (V1 – V7). While most
of the existing tools focus on architectural design decisions
(ADDs), ConDec does not restrict the kind of decisions to be
captured and visualized. Shahin et al. provide an overview of
tools that support visualization of ADDs [30]. Besides, they
assess whether the Compendium tool can be used to visualize
ADDs. SEURAT inspired our dashboard (V6) development

and the DoD criteria since it infers over the rationale to look
for potential problems. It offers a rationale task list.

The visualization of rationale in its context to other know-
ledge is closely related to traceability visualization. For exam-
ple, Filho and Zisman present the D3TraceView tool, which
offers similar views as ConDec (matrix, list, and tree), but
also a radial tree and sunburst view [32]. Bacher et al. develop
different tree visualizations for source code comprehension, in
particular, a circular tree-map and an icicle tree [33]. Kugele
and Antkowiak use the metaphor of an impact city to visualize
CIA results [34]. These works do not focus on rationale.

Yang et al. [35] discuss agile practices that can be integrated
into knowledge management: backlog, iterative and incremen-
tal development, refactoring, continuous integration, effective
communication, and just enough work. In particular, the idea
of managing a decision backlog has been suggested by various
authors, e. g. [36], [37], [38], [39]. In addition, ConDec also
shows the requirements and code files that violate the DoD
regarding knowledge documentation in the rationale backlog.

New aspects about ConDec are that it integrates into the
practices and tools that the developers use (e. g., into managing
requirements in the ITS). ConDec supports various documen-
tation locations for rationale. None of the existing tools seem
to support transitive link visualization (F2).

VI. CONCLUSIONS AND FUTURE WORK

Rationale management is beneficial for the change process
during fast and rapid software development processes such
as CSE. However, decision knowledge is often implicit and
not visualized during CSE. Based on a knowledge graph data
structure, we presented tool support called ConDec to make
decision knowledge explicit. We elicited five high level re-
quirements R1 – R5 that address rationale management during
CSE. We designed seven views V1 – V7 on the knowledge
graph and seven features F1 – F7 to tailor the views for specific
purposes. In a case study that simulated an industry project
in an academic setting, we demonstrated the usefulness of
ConDec’s views and its features. In the future, we will do a
further evaluation on the usefulness of ConDec. In particular,
the visualization of transitive links can be helpful to exploit the
distributed knowledge documentation during CSE. However,
this needs further evaluation. Besides, ConDec’s knowledge
graph data structure, its views, and its features should be
further improved. Mechanisms for trace link improvement and
maintenance should be added [18]. Change impact estimation
should combine more approaches [21], [4], its visualization
could be done e. g. using impact cities [34], and automatic
change execution could be supported. We will work on further
nudging mechanisms [22] to trigger rationale management.

ACKNOWLEDGEMENT

This work was partly supported by the DFG (German
Research Foundation) under the Priority Programme SPP1593:
Design For Future – Managed Software Evolution (CURES

Definitive version available at https://doi.org/10.1109/VISSOFT52517.2021.00013

https://doi.org/10.1109/VISSOFT52517.2021.00013

Accepted at IEEE Working Conference on Software Visualization (VISSOFT 2021), Copyright IEEE

project). We thank the students who supported the develop-
ment of the ConDec tools and the project participants as well
as Doris Keidel-Mueller and the anonymous reviewers.

REFERENCES

[1] A. H. Dutoit, R. McCall, I. Mistrı́k, and B. Paech, Rationale Manage-
ment in Software Engineering: Concepts and Techniques. Springer,
2006.

[2] J. E. Burge and D. C. Brown, “Software Engineering Using RATionale,”
Journal of Systems and Software, vol. 81, no. 3, pp. 395–413, 2008.

[3] P. Kruchten, “Documentation of software architecture from a knowledge
management perspective – design representation,” in Software Architec-
ture Knowledge Management. Springer, 2009, pp. 39–57.

[4] C. Carrillo and R. Capilla, “Ripple effect to evaluate the impact of
changes in architectural design decisions,” in 12th European Conf. on
Software Architecture (ECSA’18). Madrid, Spain: ACM, 2018, pp. 1–8.

[5] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol. 123, pp.
176–189, 2017.

[6] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. A. Babar, “10 years
of software architecture knowledge management: Practice and future,”
Journal of Systems and Software, vol. 116, pp. 191–205, 2016.

[7] L. Bratthall, E. Johansson, and B. Regnell, “Is a Design Rationale
Vital when Predicting Change Impact? – A Controlled Experiment on
Software Architecture Evolution,” in 2nd International Conference on
Product Focused Software Process Improvement (PROFES). Oulu,
Finland: Springer, 2000, vol. 1840 of LNCS, pp. 126–139.

[8] J. Cleland-Huang, M. Mirakhorli, A. Czauderna, and M. Wieloch,
“Decision-Centric Traceability of architectural concerns,” in 7th In-
ternational Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE). San Francisco, CA, USA: IEEE, 2013, pp. 5–11.

[9] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge, “How do Prac-
titioners Manage Decision Knowledge during Continuous Software En-
gineering?” in 31st Int. Conference on Software Engineering and Know-
ledge Engineering (SEKE’19). KSI Research Inc., 2019, pp. 735–740.

[10] J. O. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech, “Towards the
visualization of usage and decision knowledge in continuous software
engineering,” in 5th IEEE Working Conference on Software Visualization
(VISSOFT 2017), Shanghai, China, 2017, pp. 104–108.

[11] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge, “Continuous
Management of Requirement Decisions Using the ConDec Tools,” in
26th International Conference on Requirements Engineering (REFSQ20)
Workshops, Doctoral Symposium, Live Studies Track, and Poster Track.
Pisa, Italy: CEUR-WS.org, 2020, p. 6.

[12] A. Kleebaum, B. Paech, J. O. Johanssen, and B. Bruegge, “Continuous
Rationale Identification in Issue Tracking and Version Control Systems,”
in REFSQ-2021 Workshops, OpenRE, Posters and Tools Track, and
Doctoral Symposium. Essen/Virtual: CEUR-WS.org, 2021, p. 9.

[13] C. Zannier, M. Chiasson, and F. Maurer, “A model of design decision
making based on empirical results of interviews with software designers,”
Information and Software Technology, vol. 49, no. 6, pp. 637–653, 2007.

[14] T.-M. Hesse, V. Lerche, M. Seiler, K. Knoess, and B. Paech, “Doc-
umented decision-making strategies and decision knowledge in open
source projects: An empirical study on Firefox issue reports,” Informa-
tion and Software Technology, vol. 79, pp. 36–51, 2016.

[15] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge, “Teaching
rationale management in agile project courses,” in 16. Workshop Soft-
ware Engineering im Unterricht der Hochschulen (SEUH), 2019, pp.
125–132.

[16] B. Paech, A. Delater, and T.-M. Hesse, “Supporting Project Management
Through Integrated Management of System and Project Knowledge,”
in Software Project Management in a Changing World. Heidelberg,
Germany: Springer, 2014, ch. 7, pp. 157–192.

[17] T.-M. Hesse, “Supporting software development by an integrated docu-
mentation model for decisions,” PhD thesis, Heidelberg University, 2020.

[18] P. Hübner and B. Paech, “Interaction-based creation and maintenance of
continuously usable trace links between requirements and source code,”
Empirical Software Engineering (ESE), vol. 25, no. 5, pp. 4350–4377,
2020.

[19] J. S. van der Ven and J. Bosch, “Making the right decision: Supporting
architects with design decision data,” in European Conference on
Software Architecture (ECSA). Berlin, Heidelberg: Springer, 2013, vol.
7957 of LNCS, pp. 176–183.

[20] U. van Heesch, P. Avgeriou, and R. Hilliard, “A documentation frame-
work for architecture decisions,” Journal of Systems and Software,
vol. 85, no. 4, pp. 795–820, 2012.

[21] S. Lehnert, “A taxonomy for software change impact analysis,” in 12th
International Workshop on Principles of Software Evolution and the 7th
Annual ERCIM Workshop on Software Evolution (IWPSE-EVOL’11).
Szeged, Hungary: ACM, 2011, p. 41–50.

[22] A. Caraban, E. Karapanos, D. Gonçalves, and P. Campos, “23 ways to
nudge: A review of technology-mediated nudging in human-computer
interaction,” in Conference on Human Factors in Computing Systems
(CHI). Glasgow, UK: ACM, 2019, pp. 1–15.

[23] J. E. Burge and D. C. Brown, “SEURAT: Integrated Rationale Man-
agement,” in International Conference on Software Engineering (ICSE).
Leipzig: IEEE, 2008, pp. 835–838.

[24] J. Malloy and J. Burge, “SEURAT Edu: A Tool to Assist and Assess
Student Decision-Making in Design,” in 47th ACM Technical Symposium
on Computing Science Education (SIGCSE’16). Memphis, Tennessee,
USA: ACM, 2016, pp. 669–674.

[25] R. Capilla, F. Nava, S. Pérez, and J. C. Dueñas, “A Web-based Tool for
Managing Architectural Design Decisions,” ACM SIGSOFT Software
Engineering Notes, vol. 31, no. 5, 2006.

[26] R. Capilla, F. Nava, and C. Carrillo, “Effort Estimation in Capturing
Architectural Knowledge,” in 23rd IEEE/ACM International Conference
on Automated Software Engineering. L’Aquila, Italy: IEEE, 2008, pp.
208–217.

[27] C. Manteuffel, D. Tofan, P. Avgeriou, H. Koziolek, and T. Goldschmidt,
“Decision architect–A decision documentation tool for industry,” Journal
of Systems and Software, vol. 112, pp. 181–198, 2015.

[28] L. Lee and P. Kruchten, “A tool to visualize architectural design deci-
sions,” in Quality of Software Architectures. Models and Architectures:
4th International Conference on the Quality of Software-Architectures.
Springer, 2008, pp. 43–54.

[29] R. C. de Boer, P. Lago, A. Telea, and H. V. Vliet, “Ontology-Driven
Visualization of Architectural Design Decisions,” in Joint Working
IEEE/IFIP Conference on Software Architecture & European Conference
on Software Architecture. Cambridge, UK: IEEE, 2009, pp. 51–60.

[30] M. Shahin, P. Liang, and M. R. Khayyambashi, “Improving under-
standability of architecture design through visualization of architectural
design decision,” in Workshop on Sharing and Reusing Architectural
Knowledge (SHARK). Cape Town, South Africa: ACM, 2010, pp. 88–95.

[31] M. Shahin, P. Liang, and Z. Li, “Architectural design decision visu-
alization for architecture design: Preliminary results of a controlled
experiment,” in 5th European Conference on Software Architecture
(ECSA): Companion Vol. Essen, Germany: ACM, 2011, pp. 1–8.

[32] G. C. Filho and A. Zisman, “D3TraceView: A Traceability Visualiza-
tion Tool,” in 29th International Conference on Software Engineering
and Knowledge Engineering (SEKE’17). Pittsburgh, PA, USA: KSI
Research Inc., 2017, pp. 590–595.

[33] I. Bacher, B. M. Namee, and J. D. Kelleher, “On using tree visualisation
techniques to support source code comprehension,” in 2016 IEEE
Working Conference on Software Visualization (VISSOFT). Raleigh,
NC, USA: IEEE, 2016, pp. 91–95.

[34] S. Kugele and D. Antkowiak, “Visualization of Trace Links and Change
Impact Analysis,” in 24th International Requirements Engineering Con-
ference Workshops (REW). Beijing, China: IEEE, 2016, pp. 165–169.

[35] C. Yang, P. Liang, and P. Avgeriou, “Integrating Agile Practices into
Architectural Assumption Management: An Industrial Survey,” in Eval-
uation and Assessment on Software Engineering (EASE). Copenhagen,
Denmark: ACM, 2019, pp. 156–165.

[36] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and
P. America, “A general model of software architecture design derived
from five industrial approaches,” Journal of Systems and Software,
vol. 80, no. 1, pp. 106–126, 2007.

[37] T. Dingsøyr and H. van Vliet, “Introduction to software architecture and
knowledge management,” in Software Architecture Knowledge Manage-
ment. Berlin, Heidelberg: Springer, 2009, ch. 1, pp. 1–17.

[38] J. F. Hoorn, R. Farenhorst, P. Lago, and H. van Vliet, “The lonesome
architect,” Journal of Systems and Software, vol. 84, no. 9, pp. 1424–
1435, 2011.

[39] O. Zimmermann, L. Wegmann, H. Koziolek, and T. Goldschmidt, “Ar-
chitectural Decision Guidance across Projects: Problem Space Modeling,
Decision Backlog Management and Cloud Computing Knowledge,” in
12th Working IEEE/IFIP Conference on Software Architecture (WICSA
’15). Montréal, Québec, Canada: IEEE, 2015, pp. 85–94.

Definitive version available at https://doi.org/10.1109/VISSOFT52517.2021.00013

https://doi.org/10.1109/VISSOFT52517.2021.00013

	Introduction
	Continuous Rationale Management
	Requirements to support continuous rationale management
	Roles and their tasks
	Developers
	Rationale manager

	Knowledge Graph with Explicit Rationale
	Knowledge graph data structure
	Views on the knowledge graph data structure
	Features: Filtering, interaction, and highlighting

	Case Study and Evaluation
	Project description
	Measurement of view usage
	Data collection
	Data analysis
	Results and discussion
	Threats to validity

	Related Work
	Conclusions and Future Work
	References

