Electronic version of an article published as ACM SIGCHI Bulletin, Vol. 29, Issue 1, 1997,
pp. 54-55

© [1997] ACM

http://bulletin.sigchi.org/1997/january/workshop/paech/




Formal User-centered Requirements Engineering”

Barbara Paech
Institut fir Informatik, Technische Universitat Minchen
Arcisstr.21, D-80290 Miinchen

paech@informatik.tu-muenchen.de

Introduction

In this extended abstract we discuss the combination of formal and user-centered re-
quirements engineering. Formal methods like Z[Wor92], VDM[AI91], LOTOS,ESTELLE
and SDL[Tur93] focus on requirements specification in terms of an abstract be-
haviour description of the software system to be build. User-centered requirements
engineering is concerned with identifying the users of the software system and un-
derstanding the tasks to be supported by the system. Here we propose

o a formal enterprise model and a formal interface model as a means of closing
the gap between the informal description of users and tasks and the formal
description of the software system and

o the use of scenarios as first-class modelling elements as a means of deriving
the enterprise and interface model systematically.

This work is part of the SYSLAB-project which aims at a methodology integrating
formal and pragmatic software development [Pae95]).

Formal user-centered requirements engineering

In the following we sketch the formal models and a suitable requirements engineering
process.

The enterprise is viewed as interacting areas where each area corresponds to a com-
plex task (often, but not necessarily associated with an organisational unit of the
enterprise). Thus the enterprise model consists of a task model which describes
the areas and their subtasks and an object model which describes the data relevant
to these tasks. The behaviour of the tasks is given by state-transition diagrams
whose transitions are labelled with triples (inputs, subtask,outputs). As an example
consider the management of a simple production company in figure 1. It interacts

*This work was carried out within the project SysLab, supported by Siemens Nixdorf and by
the Deutsche Forschungsgemeinschaft under the Leibniz program



with the customers (channels cm,mc), the production (channels pm,mp) and the store
(channels sm,ms)

cm: order [order acceptance]
mp: accepted order

pm:timeout

[enquiry]
mp:enquiry

wait for
order

cm:money, sm: storage confirmation

. wait for
[entering] mc:coupon,ms:release .
enterin .‘

Management

pm: production confirmation
[billing] mc: bill

cm:timeout sm:timeout
[enquiry] [enquiry]
mc:enquiry ms:enquiry

Figure 1: Task behaviour description

The interface model describes the interaction between the user and the software-
system. On one hand the services of the software-system are identified, where
services are the subtasks allocated to the software-system. The behaviour of the
software-system is described in terms of the services. Here again state-transition di-
agrams are used. On the other hand the objects relevant to the services are collected
in the interface object model.

These models are derived from business process scenarios and usage scenarios, which
specify exemplary dependencies between tasks and exemplary interactions between
users and the software system, respectively.

Altogether we propose the following process for the engineering of functional re-
quirements

1. In a mixed bottom-up and top-down manner business process scenarios are
identified and described on different refinement levels.

2. On each refinement level from the scenarios the enterprise object model and the
full-behaviour descriptions for the tasks in terms of state-transition diagrams
are derived.

3. At a certain refinement level business process scenarios are transformed into
usage scenarios. Further usage scenarios for individual workplaces are added.

4. As for business processes usage scenarios are described on different refine-
ment levels and analyzed by deriving the interface object model and the state-
transition-diagrams for the software-system and the tasks supported by the
system.



Related Work

Techniques for modelling processes of the application system have been used in most
pragmatic software development techniques (e.g. SSADM[DCC92]). However, these
models have been used informally to achieve an understanding of the application.
In our approach the emphasis is on a thorough analysis of the enterprise. Both,
business process scenarios and task behaviour descriptions are first class modelling
elements which

e can be incrementally developed (e.g. through refinement)
e analyzed (e.g. through simulation).

Most pragmatic software development methods also use some kind of scenarios to
determine the interface of the software system (e.g. FUSION [CAB*94]). But again
they are mostly used informally. To our knowledge the only approach making heavy
use of usage scenarios is OOSE[Jac92] which is often called "the use-case approach”.
Use cases are also maintained throughout the development process as independent
modelling elements. Thus to some extent our work can be understood as giving a
formal basis to Jacobsons’ approach.

Similar to the approach of the TASK methodology ([BJWZ94]) we view the mod-
elling of tasks as the key element of combining requirements analysis methods and
user-centered design. The formal interface model is the basis for a detailed user-
interface design. The task description by state-transition diagrams can directly be
used for prototyping purposes. Another advantage of formality is the possibility of
proving important properties of the specification like consistency, safety or liveness.

Conclusion

We have discussed the role of formal enterprise and interface models within the
process of user-centered requirements engineering. The approach outlined above
is far from complete. The methodological steps leading from the scenarios to the
full behaviour descriptions are not fully understood. In [Bro95] the mathematical
foundations are sketched. This formal basis should be hidden from the software
developer. However, it is essential for powertul tool-support allowing for a thorough
validation of the behaviour descriptions.

References

[AI91] D. Andrews and D. Ince. Practical Formal Methods with VDM. Series
in Software Engeneering. McGraw-Hill, 1991.

[BJWZ94] A. Beck, C. Janssen, A. Weisbecker, and J. Ziegler. Integrating object-

oriented analysis and graphical user interface design. In Software En-



[Bro95]

[CAB*94]

[DCCY2]

[Jac92]

[Pae95]

[Tur93]

[Wor92]

gineering and Human-Computer Interaction, LNCS 896, pages 127-140.
Springer Verlag, 1994.

M. Broy. Mathematical system models as a basis of software engineering.

In LNCS 1000. Springer Verlag, to appear, 1995.

D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes,
and P. Jeremaes. Object-Oriented Development - The FUSION method.
Prentice Hall, 1994.

E. Downs, P. Clare, and 1. Coe. Structured systems analysis and design
method: application and context. Prentice-Hall, 1992.

I. Jacobson. Object-Oriented Software Engineering. Addison-Wesley,
1992.

B. Paech. A methodology integrating formal and informal software de-
velopment. In M.Wirsing, editor, ICSE-17 Workshop on Formal Methods
Application in Software Engineering Practice, pages 61-68, 1995.

K.J. Turner(ed.). Using formal description techniques - an introduction

to ESTELLE, LOTOS and SDL. John Wiley & Sons, 1993.

J.B. Wordsworth. Software Development with 7. Addison-Wesley, 1992.



